
Integrated Assessment 1389-5176/02/0302–3-233$16.00
2002, Vol. 3, Nos. 2–3, pp. 233–246 # Swets & Zeitlinger

Emergent Properties of Scale in Global Environmental

Modeling – Are There Any?

WILLIAM E. EASTERLING1 AND KASPER KOK2

1Department of Geography and Center for Integrated Regional Assessment, The Pennsylvania State University, USA, and
2International Centre for Integrative Studies, University of Maastricht, The Netherlands

ABSTRACT

This essay argues that much of the concern over issues of scale in the modeling of complex human-environment systems – of which

integrated assessment models are a special case – tends to be preoccupied with bottom-up aggregation and top-down disaggregation.

Deep analysis of the underlying explanation of scale is missing. One of the intriguing propositions of complex systems theory is the

emergence of new structures at a high level of scale that are difficult if not impossible to predict from constituent parts. Emergent

properties are not the mysterious creation of ‘‘new material’’ in the system, but rather the placement of the components of the system

into their logical contexts (scales) so that the observer=modeler can see structures arise from them for the first time. The stochastic

interaction among low-level elements that gives rise to emergent properties may be part of a larger process of self-organization in

hierarchical systems. Self-organization and attendant emergent properties constrain low-level elements through a network of

downwardly propagating positive feedbacks. Those feedbacks not only tend to hold the system in a temporary stable state, but they

also render it vulnerable to radical reorganization by rapid external forcing. The vulnerability of the USA agricultural production

system to climate change is given as an example of how a self-organizing, hierarchical system paradoxically may become susceptible

to large external shocks as a result of the emergence of high-level structures that seek to protect its low-level components from short-

term variability. Simulations of changes in Honduran maize production in the aftermath of Hurricane Mitch using the CLUE land use

model demonstrate the influence of multi-scale complexity on the resilience of land use after disturbance. Finally, it is argued that

improved understanding of emergent properties of scale may give fundamental insight into the conditions of surprise.
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1. SCALES IN CLIMATE CHANGE IMPACT

ASSESSMENT

The quest for new scientific knowledge cannot escape

certain dualities such as cause-effect, model-subject, and

observer-object [1]. These dualities condition how we learn,

what we learn, how we express the results and what we do

with them afterward. They are the human constructs that are

used to distinguish order from disorder. Scale1 is a construct

that permits the observer to locate self relative to a set of

objects distributed in space, time and magnitude. It explains

nothing in and of itself, but its perspective facilitates the

discovery of pattern and process [2, 3]. To examine issues of

scale in the epistemology of system behavior is to stray away

from reductionism and toward the understanding of the

relations between the components of a system and the

system as a whole. The goal of this essay is to reflect on

whether the concept of emergent properties of scale – real or

imagined – is a useful construct to guide the development of

models of global human-environment systems that consist

of regional components and sub-components.

While their scale dimensions most uniquely characterize

problems of global environmental change, very little deep

analysis of the meaning of scale has been applied to the

resolution (usually by modeling) of those problems [4].

Scale surfaces mostly as a practical modeling problem of

scaling up from the very small to the very large or scaling

down from the very large to the very small [5]. Scaling up

and scaling down raises another duality of global environ-

mental change research captured in the two modeling

paradigms – ‘‘bottom-up’’ and ‘‘top-down’’ – that dominate

the field of integrated assessment modeling (IAM),
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especially as pertains to the simulation of biophysical

and related human response to climate change [6]. The

reference point for both paradigms is spatial and temporal

scale.

A bottom-up approach is typified by process-level

simulation of biophysical response to a change in climate

variables across a range of ‘‘representative’’ modeling sites.

The results are then passed to an integrative model (usually

economic) of the region or globe that contains those sites in

order to deliver a quantity that has policy relevance (e.g.,

Rosenberg [7], Parry et al. [8, 9], Rosenzweig and Parry

[10]).

A top-down approach is typified by the development

of reduced-form relations between climate, biophysical,

and socioeconomic variables that are estimated (often econo-

metrically) from data pooled at regional levels in order

to estimate global impact directly [11–14]. Also included

in this class are Ricardian (or ‘‘ergodic’’ according to

Schneider et al. [15]) economic modeling approaches

that statistically relate climate variables to land rents in

cross-section (i.e., across regions at one point in time)

in order to estimate national impact and adaptation

[16, 17].

Both paradigms incorporate the results of large-scale

general circulation model (GCM) experiments of climate

change in order to simulate impacts. Mismatches in scale

resolution between systems being modeled – illustrated best

between GCM results with a resolution of hundreds of

kilometers and their recipient site-specific process models

with resolutions of a few meters – call into question the

reliability of the simulated impacts [18].

Bottom-up approaches are conducive to the construction

of regional profiles of climate change impacts from detailed

process studies; important climate effects are often portrayed

mechanistically and adaptive response can be tested in

controlled sensitivity experiments [19]. Top-down ap-

proaches, particularly global IAMs, permit the global change

problem to be represented as a tightly coupled biophysical

and social system with explicit linkages and feedbacks

among components. Very little is exogenous. Their use of

statistical aggregates in the modeling of system components

allows estimation of whole system adaptation rather than an

ad hoc sampling of adaptive strategies as in the case of

bottom-up approaches.

Scale-related criticisms apply to both paradigms. Bottom-

up approaches are criticized for the crudeness by which site-

specific model results are aggregated to derive regional

estimates [5, 19]. Linearity among scales is often presumed

in the aggregation of site model results. Assumptions of

linearity imposed by the averaging of nonlinear relations

across multiple sites in space may result in substantial

aggregation error illustrated as in Figure 1. Accordingly, the

greater the non-linearity is, the greater the aggregation error.

Top-down approaches are criticized for their generality and

the loss of regional detail that may obscure important

distributional features of climate change impacts.

Application of the results of top-down modeling indis-

criminately to constituent regions risks the ecological

fallacy [5].

We assert that scale-related problems associated with

either approach are much more fundamental than those

described above; such are merely symptomatic of a deeper

failure to account for the inherent complexity of the entire

system being modeled. We assume, for purposes of

discussion, that most human-environment systems (defined

below) that are of interest to global environmental change

researchers are complex. That is, total system behavior

cannot reliably be predicted by linear combinations of the

system’s (microscopic) sub-components [20]. Moreover,

behavior in system sub-components may be constrained or

controlled by larger (macroscopic) components. By exten-

sion, the difficulty of whole system predictability from

below and the potential existence of control structures from

above indicate emergent properties a priori. Such properties

may arise by collective physical or biological processes, or

by collective institutional thought. Moreover, they may be

important levers to the understanding and manipulation of

system behavior.

In the remainder of this paper, we develop the argument

that complex human-environment systems are hierarchical.

We then review the concept of emergence within the context

of scale and suggest a theoretical basis for emergent

properties of scale based on observed self-organizing traits

of hierarchical complex systems. Two applications of our

theoretical reasoning are presented. First, we discuss the role

of scale emergence of institutional structures that may

increase the vulnerability of the U.S. agricultural system to

climate change. Second, we describe the process of

agroecosystem reorganization in the aftermath of Hurricane

Mitch in Honduras as an example of the dissolution of

vulnerable emergent structures as the result of a large

external forcing. Finally, we argue that proper representation

of scale-related emergence in models of complex, hierarchi-

cally structured human-environment systems may improve

Fig. 1. Hypothetical aggregation error by up-scaling non-linear relations

between crop yield and precipitation (Source: Easterling [19]).
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the capability of such models to anticipate surprises in store

from global environmental change.2

2. HUMAN-ENVIRONMENT SYSTEMS

AS COMPLEX AND HIERARCHICAL

The concept of human-environment systems is referenced

extensively in this paper which warrants a brief explanation

of its meaning. At a high-level of abstraction, there is no

physical separation of ecosystems from socioeconomic

systems. Both contain dissipative structures in a stable state

far from thermodynamic equilibrium [22]. They are both

open systems that require steady energy and material

gradients. In the case of ecosystems, the energy source is

the sun. In the case of socioeconomic systems, energy

sources range from wood and fossil fuels, to the kinetic

energy of falling water, to the heat of fission and several

technologies that are just over the horizon. Both systems

consume energy-laden, low-entropy materials for self-

maintenance and the production (or reproduction) of new

material forms. They also excrete or exhale high-entropy

heat and material. Both are self-regulating by different

mechanisms – ecosystems by natural feedbacks (abiotic

controls) and socioeconomic systems by human institutions

(markets, cultural norms and other social institutions).

Material and energy exchange so freely between ecosystems

and economic systems as to make boundaries between them

indistinguishable except by convention (for example, the

boundary between the market and non-market shown in

Fig. 2). Hence, ecosystems provide services in the form of

renewable natural resources (e.g., food, fiber, and esthetics)

to economic systems. The point here is that the same laws

that govern ecosystem dynamics operate as constraints3 on

socioeconomic systems – the result is similarities of spatial

organization between the two, as shall be argued below. It is

neither useful nor productive to reduce ecosystems and

economic systems into independent parts in models of global

environmental change processes, which, fortunately, is well

ordained in both the bottom-up and top-down modeling

paradigms. Hereafter, the term human-environment system

is used to infer spatio-temporal assemblages of ecosystems,

and their abiotic controls (climate mostly), and socio-

economic systems that derive benefit from ecosystems.

It has been suggested that the components of ecosystems

and economic systems are structured hierarchically in space

and time [23–27]. A hierarchy is a partially ordered set of

objects ranked according to asymmetric relations among

themselves [28]. Descriptors useful in distinguishing levels

of a hierarchy include, for example, larger=smaller than,

faster=slower than, to embed=to be embedded in, and to

control=to be subject to control. In ecosystems, the behavior

of lower levels in the hierarchy (e.g., individual organisms)

is explained by biological mechanisms such as photosynthe-

sis, respiration, and assimilation [29]. At higher levels,

abiotic processes such as climate variability and biogeo-

chemical cycling impose constraints on lower level biolog-

ical mechanisms. In economic systems, the lower levels of

Fig. 2. The Human-Environment System (Source: after Ayres [22]).

2Our arguments are developed standing shamelessly on the shoulders of

pioneers in systems analysis – especially the work of Priogogine, Weinberg

and Boulding – and, more recently, in systems ecology – especially the work

of Levin, Holling and Clark. We were greatly influenced by a thoughtful

review of emergent properties by Wiegleb and Br€ooring [21].

3We do not mean to argue that economic behavior is ‘‘determined’’ by

thermodynamic laws in the same sense as ecosystem behavior, but rather

that thermodynamic laws impose challenges to human ingenuity that force

adaptive change.
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the hierarchy are understood best in terms of rapidly

changing production functions of individual firms. The

higher levels impose constraints on individual firms in the

form of slower moving nationally and internationally

extensive features such as rates of inflation, prices, and

national income [2].

Hierarchy theory evolved out of general systems thinking

to explain the muli-tiered structure of certain types of

production systems. The theory, in simplified terms, posits

that the most useful way to deal with problems of global

change in a multi-scaled complex system is to understand

how the elements of the system behave at a single time-space

level of scale [24]. That level (Fig. 3, Level 0) will itself be a

component of a higher level (Level þ1). Level þ1 dynamics

are generally slower moving and greater in extent than Level

0; they form boundary conditions that serve to constrain the

behavior of Level 0. Level 0 may then be divided into

constituent components at the next lower level (Level �1).

Processes operating at Level �1 are generally faster moving

and lesser in spatial extent than Level 0; they provide the

mechanisms that regulate Level 0 behavior. They are

represented as state variables (dynamic driving forces) in

models of Level 0 [24]. Thus, the goal of hierarchy theory is

to understand the behavior of complex systems by structur-

ing models to capture dynamics at the next lower and higher

scales of resolution. It provides a framework for testing for

the property of emergence discussed in the several sections

below.

3. EMERGENCE: REAL OR IMAGINED?

One of the more controversial concepts that came to

prominence in the general systems theorizing of the 1960s

was the notion of emergent properties. The essence of

emergent properties is captured best in the psychologist

Wundt’s famous quote: ‘‘the whole is greater than the sum of

its parts.’’ Emergence literally is the process of coming into

being. It suggests that the interaction of pattern and process

at a smaller, faster scale produces a fundamentally new

organization at a larger, slower scale [30]. It is described in

several sciences including physics, chemistry, atmospheric

sciences, economics, psychology and political science, but

as a property of scale it receives special attention in

ecosystem ecology [29, 31] where it is accepted, often

uncritically, as an organizing principle of ecosystem form

and function.

The notion of emergent properties of scale is important

for a number of reasons. For one, some ecologists argue that

emergent properties may serve as useful indicator variables

for monitoring the stability and integrity of ecosystems in

the face of rapid external forcing [25]. Management policies

that manipulate emergent properties manipulate whole

ecosystem behavior instead of fractions thereof. The same

applies to human components of human-environment

systems a priori. For two, the inclusion of emergent

properties in modeling may reduce model uncertainty, which

improves the anticipation of surprise (discussed below).

There has been a long-standing debate in the systems

analysis literature over the existence of emergent properties.

Wiegleb and Br€ooring [21] classify the two poles in this

debate as denial of emergence and ontological emergence. In

the former, denial of emergence, there is no emergence. To

recognize emergent properties is to concede defeat in one’s

attempt to understand and model a system. The extreme

version of this position is that everything in science is

explained by the theory of quarks. Einstein, in his

investigation of Brownian motion, asserted that we could

predict the state of a system were we to know enough about

the state of every molecule in the system – but he says in a

footnote, ‘‘Dear reader, do not believe that you can do that.’’

We believe it is misleading to think that we might

‘‘correctly’’ model global scale biophysical and human

response to climate change by simply aggregating fine-scale

mechanistic explanation properly. It is similarly misleading

to think that the reduction of all modeling to the finest level

possible gives purely mechanical and, thus, reliable

explanation.

Levin [29] points out that at very fine spatial and temporal

scales, stochastic phenomena or deterministically driven

chaos make systems unpredictable, hence the replacement of

classical mechanics by quantum mechanics at the smallest

scales. Similarly, at the scale of individual human agents,

behavior is not deterministic but rather stochastic. Were

complex human-environment systems only to be understood

in purely deterministic terms then a strong interpretation of

Prigogine’s [32] analogy that we are all merely actors in the

pages of a cosmic history book already written would apply.

There is no wiggle-room for emergence in this view and we

reject it out of hand from further consideration in this essay.

At the latter pole – ontological emergence – the notion of

emergence takes on a metaphysical dimension. Ontological

differences between objects, literally differences between

existence and nonexistence, are used to define the endpoints

of emergence. To emerge is to come into being. Practically

speaking, debates over ontological emergence focused on

the precise conditions under which inanimate objects

become animate ones. Vitalism, historically argued to be

Fig. 3. Levels of a Hierarchy (Source: after O’Neill [24]).
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the almost magical or teleological emergence of life from the

assemblage of cellular parts, was the object of much

attention in biological sciences prior to the 20th century.

Fundamental advances in cell biology have all but eradicated

vitalism as a meaningful construct. It is now recognizable

only in the psychology literature where concepts of ‘‘soul’’

and ‘‘self’’ remain irreducible [21]. Lovelock’s [33] Gaia

Hypothesis of a ‘‘secretly’’ self-regulating biosphere may be

the quintessential example of ontological emergence on a

grand scale: intriguing by circumstantial evidence but

demanding of scientific blind faith to hold together. The

concept of ontological emergence seems to have moved

beyond all the scientific disciplines, save psychology and

political science. It is now essentially a debate about ethics

and human agency.

Between the two poles of denial of emergence and

ontological emergence lies the view of epistemological

emergence. Epistemological emergence takes several forms

according to Wiegleb and Br€ooring [21] but the most relevant

form to this discussion is hierarchical (synchronous)

emergence and its special cases of scale and model

emergence. This form accepts the validity of emergence in

principle but does not demand an explanation of ontological

differences.

3.1. Hierarchical Emergence

Hierarchical emergence is based on the presumption that the

system of interest is structured hierarchically in time-space

as per the above discussion. It can be thought of as the

appearance of properties at a high-level of scale that is not

derivable from the behavior of constituent (low-level of

scale) components a priori [23]. Hierarchical emergence is

the result of stochastic lower level interactions (elaborated

below). It is high-level order emerging from low-level

apparent disorder. Low-level disorder is more apparent than

real because of interacting elements too complex and

numerous to be practical to model deterministically.

Emergent properties as such may constrain low-level

interactions while themselves being buffered from the

random upward pulses of change from lower levels of scale

as long as the whole system remains in a steady state. Long-

term commodity price trends in a market economy illustrate

the point. They strongly regulate producer and consumer

behavior while being largely unaffected in the long-term by

short-term fluctuations in supply and demand. However,

systems theory suggests that large upwelling singularities or

bifurcations may disrupt these relations between levels of

scale [25]. An example of such a singularity in an economic

system is the tendency for the sudden appearance of a radical

new technological innovation to reorder relations of

production so as to disrupt the downward propagation of

price signals [27]. We will return to this point below.

Wiegleb and Br€ooring [21] note that shifts in scale by the

observer=modeler may produce more than averages or

constants. These shifts may make homogeneity out of

heterogeneity and vice versa. They may bring order out of

seeming disorder simply by magnifying or de-magnifying

the resolution and extent of the data. This is scale

emergence. In Levin’s [29] example of the unpredictable

nature of fine-scale stochasticity in a system, an increase in

level of scale may collect enough objects in the system to

regularize their behavior to the point that statistical

generalizations are possible.

A related and somewhat obscure problem in geography

and landscape ecology research is the ‘‘modifiable areal unit

problem (MAUP)’’ [34, 35]. A shift in the sizes or shapes of

the geographic units used to assemble data for modeling can

in and of itself create homogeneity out of heterogeneity and

vice versa.

In principle, the MAUP is demonstrated most effectively

with gridded data. We tested for the existence of the MAUP

with a gridded data set used to simulate climate variability

effects on crop yields in the southeastern USA. The EPIC

process crop model was run with 36 years of observed

climate and 2�CO2 climate change (the climate changes

were supplied by the CSIRO general circulation model

described in Mearns [36]), management and environmental

data allocated to a regular grid network consisting of 288

0.5� grid boxes imposed on the southeastern USA (Fig. 4). A

series of maize yield simulations was performed at different

levels of spatial aggregation of the input data. Two different

aggregation strategies were used which simply altered the

shapes of the aggregation units. One strategy aggregated all

units in square clusters illustrated in Figure 4(a–e). The other

strategy aggregated all units in linear clusters illustrated in

Figure 5(a–e). For both the square clustering strategy and the

Fig. 4. Cluster (square) aggregation method.

EMERGENT PROPERTIES OF SCALE 237



linear clustering strategy, Level 1 was the finest resolution

with independent model simulations for each of the 288 grid

boxes. At Level 2, independent simulations were run for 72

2� 2 aggregates for the square clustering and 72 1� 4

aggregates for the linear clustering. At Level 3, there were 18

4� 4 and 2� 8 aggregates. At Level 4 there were 2 12� 12

and 6� 24 aggregates. At Level 5 both aggregation strat-

egies (cluster and linear) produced 1 12� 24 aggregate.

Yields at each of the levels were averaged across the net-

work to create one average yield per level for purposes of

comparison (Table 1). The temporal coefficients of variation

of modeled yields at each level were handled similarly. At

each level of aggregation a Student’s t-test was performed on

the paired (linear vs. cluster) yields to determine whether

there were statistically significant differences.

As can be seen in Table 1 the simple change in shape of

the clustering of network components (grid cells) has

minimal effects on mean yields at most levels although

some of the differences were statistically significant in the

climate change case. Level 5 yields show the greatest

differences (both in the observed climate and climate change

cases). At Level 5 the full effects of the different spatial

paths the two aggregation strategies take with the input data

are fully accumulated which probably explains the sig-

nificance of the differences. We suggest, although do not

test, that even these Level 5 yield differences would

probably narrow in a Monte Carlo type design that considers

several different aggregation strategies.

Although examples in the literature [34, 35] do show that

the MAUP can indeed be a significant influence at the

aggregate level, the resulting emergent features probably

represent the failure to account for hierarchical structures in

the system rather than a meaningful high-level property of

the system [35]. For example, a gridded aggregation scheme

that happens upon the exact pattern that maximizes

differences in climate between clusters might be expected

to show substantial accumulated yield differences with

respect to any other aggregation pattern because of the great

importance of climate in distinguishing large-scale differ-

ences in crop productivity. This may explain why some of

the differences between yields in the above example were

significant at one level of aggregation but not at other levels.

These simple explanations of scale-related emergence

beg the question: Do they truly reveal underlying process or

are they merely an aggregation sleight of hand with the data?
This question raises an even more fundamental question that

strikes at the heart of the meaning of epistemological

emergence. Is an emergent property constituted of ‘‘new

material’’ in the system or is it simply a relationship between

the system and the Table 1 observer? To wit, is the ‘‘market’’

a tangible object that appears out of thin air or revelation that

appears when the system is viewed in a certain space-time

context?
The answer to this last question is that properties

‘‘emerge’’ for a particular observer because he or she could

not or did not predict their appearance because of lack of

data or understanding or both [37]. That same property may

be perfectly predictable to another observer. We assert that

properties emerge at different levels of scale due to

imperfections in how the observer=modeler interprets the

Fig. 5. Linear aggregation method.

Table 1. South-eastern USA simulated corn yield response to 1960–1995 observed climate and CSIRO climate change (2�CO2) at different levels and

shapes of units of aggregation: yields averaged over time and aggregation units.

Climate Level 1 (288) Level 2 (72) Level 3 (18) Level 4 (2) Level 5 (1)

Cluster Linear Cluster Linear Cluster Linear Cluster Linear Cluster Linear

Observed 6.29 6.29 6.28 6.23 6.00 6.15 5.69 5.38 5.77** 5.41**

CV .077 .077 .077 .077 .056 .048 .049 .042 .044 .038

2�CO2 6.19 6.19 6.00** 5.83** 5.78** 5.97** 5.65** 5.71** 5.84** 5.38**

CV .080 .080 .079 .083 .069 .056 .052 .050 .048 .050

Note. **¼ Statistically significant at 0.001 alpha level.
Values in parentheses are number of aggregation units at a given level.
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scales at which various driving forces of a system operate.

Emergent properties appear when different objects of a

system are brought into a logical context [21].

Emergent properties may also appear by accounting more

fully for system complexity [23] (Wilbanks, personal

communication). For example, additional data may greatly

alter the understanding of relations among components of a

non-linear system. Hence, complexity can be scaled as well

as space and time. Moreover, several studies of hierarchical

complex systems reviewed in a recent National Research

Council report [38] conclude that complexity may be best

understood at those portions of the scale that traverse the

transition from deterministic to stochastic understanding.

This transition tends to occur at meso-scales (regional)

rather than macro-scales. Such scales are a natural focal

point for increased modeling effort.

It seems reasonable to conclude that emergent properties

of scale are best articulated in terms of observer-system

relations and not as ‘‘new material’’ in the system. The new

material view casts us back into the muddled debate of

ontological differences. Until fairly recently an underlying

process-based justification of epistemological emergence,

useful as guidance to the modeling of hierarchically

structured human-environment systems, was lacking. Recent

thinking about processes of self-organization and dissipative

structures has been applied to hierarchy theory casting a new

light on the framing of epistemological emergence.

4. SELF-ORGANIZATION AS A DYNAMICAL

THEORETICAL BASIS FOR SCALE-RELATED

EMERGENCE

The development of a theoretical explanation for the

existence of emergent properties of scale in human-

environment systems requires the unraveling of the very

meaning of complexity. Most simple systems consisting of a

small number of elements can be understood structurally and

modeled mechanistically (Fig. 6, Region I). They represent

‘‘organized simplicity.’’ Full description of a simple two-

object system requires only four equations: one for each

object to describe how the object behaves by itself

(‘‘isolated’’ behavior equation), one to describe how the

behavior of each object affects that of the other (‘‘interac-

tion’’ equation) and one to consider how the system behaves

absent the objects (‘‘field’’ equation). As the number of

objects increases, there is only one field equation and one

isolated equation per object. The number of interaction

equations, however, increases by the ‘‘square law of

computation’’ (2n, where n is the number of objects). For

example, 10 objects require 210¼ 1,024 interaction equa-

tions. Complex human-environment systems consist of

many times more than 10 objects.

As noted above, human-environment systems are not

purely deterministic at any level of scale. But it is possible to

simulate generalized human behavior at small scales, using

agent-based modeling and other stochastic approaches, as a

simple stochastic system with a finite number of possible

outcomes. This is analogous to simulating organized

simplicity in Figure 6. However, as the number of agents

increases with scale, the complexity of interactions rises. A

model that tracks every agent’s interactions with every other

agent, and with the environment, rapidly eludes comprehen-

sion and computation even with massively parallel process-

ing. Yet, at the extreme of large numbers of agents at low

levels of spatial and temporal scales, the interactions within

the population are random and therefore predictable in a

statistical sense by their aggregation to high levels of scale

(Fig. 6, Region II). In such populations, the ‘‘law of large

numbers’’ dictates that the probability that a property of any

one object in the population will deviate significantly from

the average value of that property across all N objects is

1=
p

N. Hence, the larger the value of N, the more predictable

the property becomes. According to Weinberg [37] such

populations are complex but random (lacking structure) in

their behavior such that they are regular enough to be studied

statistically – they represent ‘‘unorganized complexity.’’

The problem with this typology is that most of the domain

of human-environment systems lies between organized

simplicity and unorganized complexity. It is the domain of

‘‘organized complexity’’ (Fig. 6, Region III). The under-

standing and modeling of land use change illustrates this

problem. At low levels of scale, Turner and Meyer [39] posit

that a wide range of social driving forces influence land use

and land cover change, including economics, culture, loca-

tion, politics, and environment. Change in the structure of

familial inheritance of land may be as important as change in

land rent in the determination of land use. Such features are

embedded in highly reduced-form structures or totally

absent in large-scale models of land use change.

At high-levels of scale, Turner and Meyer [39] argue that

Ehrlich and Holdren’s [40] IPAT relation – defined as:

Intensity of human impact on the environment (I)¼
Population (P)�Affluence (A)�Technology (T) – usefully

explains large-scale patterns and trends of land use change.

Elements of IPAT are easily identified in global IAMs such

as the IMAGE 2.0 model [41] that simulates land use changeFig. 6. Complexity versus randomness.
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as a function of change in agricultural demand, which is

approximated by changes in population and per capita

income. Turner and Meyer [39] imply, however, that the

absence of low-level driving forces in most extant land use

models results in potentially serious prediction errors at

small scales.

Systems of land use change that cross several space-time

scales lay between the structure and precision of organized

simplicity and the lack of structure and large aggregates of

unorganized complexity. Too complex for analytical solu-

tion and too structured and organized for pure statistical

treatment, this is the domain of complex human-environ-

ment systems and the logical focal point of integrated

assessment models. Weinberg [37] refers to these as

‘‘medium number systems’’ subject to the law that large

fluctuations, irregularities, and discrepancies will occur

more or less regularly. We assert equivalence between

medium number systems and the meso-scale of human-

environment systems. This is the (regional) scale at which

the modeling of complexity is most tractable a priori.

The propensity for large fluctuations, irregularities and

discrepancies is a necessary condition for self-organization,

a feature of medium number systems that plays a central role

in explaining the appearance of emergence in those systems.

Buenstorf [27] describes self-organization as a dynamic

process whereby structures and properties emerge at the

system level out of intense interactions among system

components. Normally self-organization is discussed in

terms of physical systems. An example is the difficulty of

upscale propagation of local governing equations of climate

because extreme non-linearity is encountered in the

aggregation process [42].

For a system to exhibit self-organizing tendencies, it must

receive steady inputs of energy and=or material (i.e., be far-

from-thermodynamic equilibrium) and be subject to power-

ful positive and negative feedbacks across levels of scale

that are spawned by non-linear relations among compo-

nents. At low-levels in the system, the sum total behavior

of components exhibits large random fluctuation [27].

Buenstorf [27] citing Prigogine and Stenger [43] argues

that positive feedback is necessary to amplify random

fluctuation at low-levels of a system. Change in price signals

(positive feedback) prompted by technological innovations

(random fluctuation) is often given as a prime example of

such in economic systems. The amplification of low-level

random fluctuation results in the self-selection of high-level

properties that constrain low-level behavior. This is a nec-

essary condition for the emergence of high-level structure

out of low-level randomness (stochasticity). Prigogine and

Stengers [43] argue that negative feedbacks serve as system

checks that help maintain the system structure. Furthermore,

Holling [44] argues that self-organized hierarchical

systems that are in a steady state are highly vulnerable

to complete reorganization when subjected to strong external

forcings (e.g., climate change).

From the practical standpoint of policy-motivated

modeling, the failure to match temporal and spatial scales

of human activities with those of nature has been an abiding

problem in the science of climate and society interactions [4,

44]. This failure stems in part from the misinterpretation of

modelers at the whole system level of the meaning of self-

organizing pulses of upwelling change from finer scales in

the system and the emergent structures that these pulses

create. The challenge in applying concepts of self-organiza-

tion to socioeconomic components embedded in human-

environment systems is the identification of positive and

negative feedbacks that give rise to emergent properties at

high-levels of scale in a spatial hierarchy.

4.1. An Application to the Problem

of the Vulnerability of the USA Agricultural

Production System to Climate Change

The co-evolution of national agricultural production systems

with global climate change illustrates the problem of

mismatches of scale. The expansion of global agricultural

capacity apace with the expansion of demand is one of the

great success stories of the 20th century. So successful have

the combined outputs of national production systems been

that real costs of production worldwide have declined

causing real food prices to decline in turn for more than a

generation [45]. This trend likely will continue into the first

few decades of the 21st century.

The consensus position is that the USA agricultural

production system will be resilient in the face of climate

change [46]. This is partly justified by historical experience

of industrialized agricultural production in dealing success-

fully with challenges that are analogous to those posed by

climate change – such as the historical success in stoking

production to meet the challenge of feeding a growing and

increasingly wealthy global population with surpluses to

spare [47]. This position is backed by many global modeling

studies (summarized in Adams et al. [48]). But is the system

as resilient as we might think? A rough sketch of the

vulnerability of the USA agricultural production system to

climate change from a hierarchical systems perspective

might suggest otherwise.

Virtually any agricultural production system is an

example of a complex human-environment system with

scale-related emergent properties, but industrialized produc-

tion systems even more so. It embeds a dissipative structure

far-from-thermodynamic equilibrium in that large through-

puts of low entropy energy (solar radiation and fossil fuel)

and material (nutrients, seed, pesticides), plus labor, are

required for maintenance and production. The system is

hierarchical in scale with individual farm enterprises that

manage agroecosystems at the lowest levels of scale, a

portfolio of agribusinesses and a network of regional and

national institutions (e.g., cooperative research and exten-

sion, commodity crop boards) that nurture and constrain at
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the next level, and national and international markets that

stabilize the system from their perch at the highest levels of

scale.

The origins of the hierarchical structure of the con-

temporary USA agricultural production system are many

but much can be traced back to a remarkable series of

technological innovations that span over a century. Com-

plexity has risen. Many of those innovations centered on the

use of energy in production. Historically, anywhere in the

world that the value of labor has risen relative to other

production inputs, the substitution of relatively cheaper

energy inputs for relatively more expensive labor has taken

place [49]. Figure 7 shows the substitution of energy for

labor inputs in USA agriculture in the 20th century. This

substitution was enabled by technological innovations

leading to labor saving mechanization. More recently in

developed countries technical innovations have led to a

second energy revolution in agricultural production. For the

past two decades production has followed a trajectory of

decreasing energy intensity measured by the proportion of

energy input per unit output where output is either a unit

of mass (yields or total production) or total value of

production. Interestingly, these two energy-related trends are

analogous to the same transformations that take place as

ecosystems self-organize into a stable state.

Although normally evaluated by its large-scale effects on

production, the drive for technological innovation is

inescapably a localized process. Hayami and Ruttan [50]

posit that technological innovation in agriculture is induced

endogenously. According to Hayami and Ruttan’s ‘‘induced

innovation hypothesis’’ [50], as factor scarcity arises,

increasing factor prices signal it. As those price increases

persist, strong signals are conveyed to the agricultural

research establishment to develop new technologies to

substitute for more costly old ones in order to hold down

costs of production.

Because regional variations in resource endowments lead

to regional differences in farmers’ comparative advantage,

the pattern of induced innovation will be likewise regionally

distributed [50]. Farmers at one location have quite different

sets of technological needs than those at another location.

The development of successful hybrid corn varieties

illustrates the point. In the USA, each state land grant

(agricultural) university has its own state corn breeder. The

process of corn hybridization represents the ‘‘invention of a

method of inventing’’ varieties adapted to each growing

region [50]. That is, the successful development and

diffusion of commercial hybrid corn varieties has been

accomplished by the evolution of a complex research,

development, distribution and educational system. This

system has depended on close cooperation among public

sector research and extension agencies, a series of public,

semipublic and cooperative seed-producing organizations

and private sector research and marketing agencies. The

research that produces these innovations is conducted

through a series of local and regional institutions such as

agricultural universities and their research and extension

stations and the various regional institutions of the

Consultative Group on International Agricultural Research.

Even the agricultural research efforts of the private sector are

largely regionally distributed.

As long as producer and factor prices do not exceed

critical thresholds, only the steady stream of continual fine-

tuning adjustments aimed at adapting cropping systems to

challenges in their local production environments (i.e.,

spatial and temporal variability in pests, climate, soils) takes

place. Occasionally, however, one particular technical

innovation rises above the others in importance and may

create a bifurcation in output amounts of sufficient

magnitude as to prompt the emergence of new institutional

structures which downwardly-regulate lower levels usually

through government programs and prices [51]. The applica-

tion of nitrogen fertilizers to corn and eventually to a wide

range of row crops begun shortly after World War II in the

USA, coupled with the hybridization of corn (described

above), brought about a remarkable global upsurge in yields

and production. From the whole system perspective, a major

innovation such as this appears to be a fluctuation welling up

randomly from many regions as the innovation rapidly

diffuses to the farms comprising the low-level components

of the spatial hierarchy.

Collectively, these random fluctuations of induced

technological innovation and the bifurcations of output they

produce give rise to emergent, self-regulating (feedback)

mechanisms at higher levels in the spatial hierarchy. In this

sense the system is nonlinear. As noted above, one such self-

regulating mechanism is price. But price is well represented

in most agricultural impact assessment models and is

sufficiently obvious as not to be very interesting here.

Another, perhaps less obvious, self-regulating mechanism

is the collective goals of society that find expression in

Fig. 7. Substitution of energy for labor in American agriculture in the 20th

century.
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national agricultural policies. In the USA, the dominant goal

of agricultural production policy is the stabilization of

interannual agricultural output [47]. It is reasonable to

conjecture that such a goal of stabilization emerged as a

national scale policy out of concern over increases in the

variability of crop yields that necessarily accompany

technologically-driven increases in mean crop yields. A

plethora of government programs carry out the goal of

stabilization of agricultural output. It includes, for example,

commodity crop insurance programs, the Conservation

Reserve Program and numerous tax exemptions accorded

uniquely to farmers.

These programs represent strong positive feedbacks to

local production. They encourage farmers to take on more

climate risk than otherwise [52]. One program aimed at

stabilization but that may, in the long run, increase the

vulnerability of the USA agricultural system to climate

change is that of government-guaranteed crop prices [53].

These price support programs stipulate that farmers must

establish an average yield of a specific crop on a base

acreage over a specified period of time (usually five years) in

order to qualify for payments. While such a program

encourages stability in the types of crops planted and lowers

risk to farmers, it is a strong disincentive to flexible changes

in the mix of crop species being planted by participating

farmers. The net effect of such ‘‘safety net’’ programs is to

encourage the expansion of high-revenue crops – often the

most sensitive to climate variation – into climatically

marginal areas for those crops and, as such, help dictate

the spatial pattern of cropping systems.

As climate changes and society absorbs the losses of

farmers who continue to grow increasingly climate-inap-

propriate crops, the system actually becomes less stable or

more vulnerable to major malfunction. At some point the

climate changes will accumulate to where stabilization

programs make no sense to society at large, resulting in

abandonment and system-wide reorganization. In an eco-

systems context, Holling [44] calls this a process of

‘‘creative-destruction’’ that accompanies his view of ‘‘nature

evolving’’ (as opposed to ‘‘nature as equilibrium’’). The

same concept seems roughly to apply to the co-evolving

climate and agricultural production systems.

What lessons for modeling can be drawn from this

example? First and foremost, if appearances can be

deceiving they will be when a complex human-environment

system is poorly specified in a model. The probability of

deception is directly related to the degree to which the

system is nonlinear. If the system being modeled is

hierarchically structured then principles of hierarchy theory

should be applied. There is no one ‘‘correct scale’’ for the

study of a hierarchical human-environment system and the

choice of modeling scale in integrated assessment modeling

has too often been an arbitrary one. O’Neill’s [24]

recommendation that models of spatially hierarchical

systems should include state variables from one level of

scale below the level of interest and constraining variables

from one level above should be followed. That is, models

should be parameterized over long enough time scales to

capture the evolution of self-organizing structures that span

spatial scales. Fine resolution (low-levels of scale), fast time-

step state variables that capture stochastic processes such as

the sudden (but predictable) appearance of innovation should

be combined with coarse resolution (high-levels of scale)

slow time-step variables that capture total system features

such as markets and national and international production

and trade policies. This type of modeling approach is likely

to reveal the emergent structures of scale that feedback to

constrain and stabilize low-level component dynamics. The

incorporation of such modeling structures in integrated

assessment modeling should allow the increased realism of

estimates of whole system vulnerability to external shocks

such as climate change to be achieved.

4.2. Emergent Properties, Vulnerability

and Resilience of Land Use Systems
with Environmental Forcing: The Case

of Hurricane Mitch and Honduran Agriculture

Complex system theories as developed for the ecosystem

might apply to the land-use system (see Loucks [54],

Conway [55], and Fresco [56]). The validity of the

assumptions on the constancy of the land-use system can

be illustrated by drawing from the work of Holling [57, 58].

He proposed using two properties to describe the system’s

reaction to a disturbance, resilience and stability. A system is

stable, when after a temporal disturbance, it can return to the

previous equilibrium, whereas resilience refers to the ability

to absorb changes of state variables, and still persist after a

disturbance.

Figure 8 illustrates the concept of resilience [57]. Over

time, connectedness builds as patterns of land use are locked

in by the emergence of large-scale controls such as prices,

infrastructure and government policy. The system becomes

Fig. 8. Four land-use system functions and the flow of events between them

(Source: redrawn from Kok and Winograd [64] and adapted from

Holling [57: fig. 23, p481]).
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brittle and vulnerable to external forcing as in the case of an

extreme climate event. When a hurricane strikes, stable land-

use patterns will rapidly be changed, during the short

disturbance phase. Stored capital is lost but the system’s

complexity remains guided partly by persistent large-scale

properties that emerged in the previous equilibrium phase

such as price mechanisms and government programs

(disaster relief). Loss of connectedness (complexity)

describes the reorganization phase that is initialized after-

wards. Subsequently, the system returns to its former

equilibrium, although key variables will certainly have

changed, and a new (re)colonization phase will start, which

will result in stable land-use patterns while capital and

connectedness build up. Those patterns are not equal to the

starting position; i.e., the land-use system is unstable, but

driven by the same set of variables, and thus resilient.

The properties of the land-use system and their relation-

ship with ecosystem theories can be illustrated with results

obtained from the application of a land-use change model

called the CLUE modeling framework to Honduras,

simulating effects of hurricane Mitch.

4.2.1. The CLUE Modeling Framework

The CLUE (Conversion of Land Use and its Effects)

modeling framework [59–61] is best described a dynamic,

multi-scale land-use change model, that explores the

spatially explicit effects of future land use changes, using

scenarios. At the highest aggregation level (usually a

country), yearly demand is calculated, based among others

on expected changes in population, income, diet composi-

tion and export=import developments. Changes in demand

are subsequently allocated in a two-step top-down procedure

with an intermediate ‘optimal’ resolution, based on statis-

tical parameters. The finest resolution is a rectangular grid,

sized between 150� 150 m and 15� 15 km. Relationships

between land-use types and a large set of potential land-use

determinants are quantified using multiple regression

techniques.

4.2.2. Mitch Scenario

Within days after hurricane Mitch struck Central America on

October 26th, 1998, the first images became available on the

path of the hurricane, total rainfall, damaged roads and

bridges etc. [62, 63], together with information on produc-

tion losses of e.g., banana plantations (Internet, various

sources). The speed with which data became available

provided the opportunity to apply the CLUE modeling

framework to Honduras and project the long-term impact of

the hurricane. A detailed description of the assumptions of

the scenario is given by Kok and Winograd [64]. Main

assumptions include: the heavy rainfall that accompanies the

hurricane temporarily excludes areas from production; a

large number bridges and roads are destroyed; import and

export are reduced; economic growth is depressed. The

assumed lower income results in a lower demand for beef

and thus agricultural area; export and import reductions have

the same effect.

In Figure 9, the short-term and long-term effects of

hurricane Mitch on land-use patterns in Honduras are

illustrated with hot-spots for maize. One year after

the hurricane, land-use changes are clearly more dynamic

in the hurricane scenario as compared to the Base scenario.

The maize area has increased significantly in extent outside

the area that was flooded, while land-use patterns in the base

scenario are far more stable. Seven years later, however,

effects of the hurricane have diminished. Although dynamics

in the Mitch scenario are somewhat higher, the overall

patterns of both scenarios are similar.

The important lesson of this example is the powerful

influence of large-scale controls (national demand for

agricultural land) on small-scale land use features (area

planted to maize) during the reorganization of those features

after external forcing (Hurricane Mitch). Although the

specific patterns of land use are changed by the hurricane,

the small-scale complexity embedded in relations between

regional resource endowments and farming ingenuity and

steered by aggregate national forces of demand for

agricultural outputs recreate a landscape whose functions

are similar to pre-disturbance conditions but are now better

adapted to environmental conditions (maize is farther from

flood-prone areas).

5. ARE ISSUES OF SCALE AND SURPRISE

CONNECTED?

Kates and Clark [65], summarizing the work of Holling [66],

state that surprises occur when perceived reality departs

sharply from expectations, when causes turn out to be

different than was originally thought. Models often inform

our expectations of the future. However, it is doubtful that

Fig. 9. Short-term and long-term effects of hurricane Mitch on cover

percentage of maize in Honduras. Depicted are modeled changes in

cover between 1993 and 1999, one year after the hurricane (left),

and between 1993 and 2005 (right), for the Base scenario (bottom)

and Mitch scenario (top). Changes are classified in decreasing cover

(white), increasing cover (dark gray and black), and no change

(medium gray). Lines indicate the flooded area. Each grid cell is

7.5� 7.5 km (Source: redrawn from Kok and Winograd [64]).
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even the best modeling strategies will accurately and

precisely forecast surprise. To do so would require making

tractable the ability to decrease fundamental uncertainty

defined as a situation so novel that no current model of any

kind applies [67]. But it is possible to decrease model

uncertainty defined as the surprise that arises when model

outcomes fail to predict actual events because of the way the

observer=modeler connected the model’s variables together

[67].

Kates and Clark [65] point out a number of techniques

that are useful in anticipating surprise. They include

historical retrodiction (learning from experience with past

unexpected events), contrary assumptions (sensitivity anal-

ysis of assumptions underlying projections), asking experts

their opinions, and imaging (an unlikely event is imagined

requiring a plausible scenario to justify it to be constructed).

Kates and Clark [65] also suggest models of system

dynamics to anticipate surprise but no mention is made of

the issue of scale in their essay.

It would appear from the discussion in previous sections

that there is, in fact, a strong connection between emergent

properties of scale and surprise. Emergence is equated with

surprise the first time it is discovered in the process of

contemplating the additional complexity of a system.

Afterward it may be demonstrated that the observer need

not have been surprised at all once the system is better

understood which, quoting Weinberg [37], ‘‘is a small

consolation if the emergent property was an explosion.’’

Hence, some aspects of surprise may arise purely from our

modeling mistakes. When things go wrong in a model, when

linearity is assumed of a non-linear system, for example,

society is ripe for surprise. Mark Twain satirizes this point in

Life on the Mississippi [68]:

‘‘In the space of one hundred and seventy-six years the

lower Mississippi has shortened itself two hundred and

forty two miles. That is an average of a trifle over one

mile and a third per year. Therefore, any calm person,

who is not blind or idiotic, can see that . . . seven hundred

and forty-two years from now the Lower Mississippi

will be only a mile and three quarters long. . . There

is something fascinating about science. One gets such

wholesome returns of conjecture out of such a trifling

investment of fact.’’

The application of the principles of hierarchy theory and

self-organization to modeling could improve our under-

standing and prediction of the conditions that produce

surprise. In short, it could predict the potential for surprise.

Surprise detected in a model provides the opportunity not to

be surprised in practice.

It is particularly important that model structures be

developed to relate small-scale stochastic processes to the

dynamics of larger scale system features since those are the

features that provide stabilizing feedbacks to the small-scale.

Holling’s [44] hypothesis of encroaching system ‘‘brittle-

ness’’ stemming from prolonged stabilizing feedbacks

should be tested. Brittleness preconditions surprise.

In the case of agricultural vulnerability to climate change,

the potential seeds of surprise may be in the localized

nature of endogenous technical change and how large-scale

institutions emerge to stabilize the fruits of small-scale

technical change. Stability in this case is gauged by the long-

run dependability of yields of the highest paying (and most

climate-sensitive) crops. As noted above, enforced stability

breeds brittleness possibly setting up an unanticipated

‘‘climate surprise’’ that would even surprise the Intergovern-

mental Panel on Climate Change, which rates the probab-

ility that the global agricultural production system would

be seriously hampered by climate change as medium to

low. The foregoing is, of course, is pure conjecture not

having done the necessary modeling, but it certainly is not

implausible.

6. CONCLUSION

A reasonable concluding question to ask is: To what extent

have notions of scale emergence penetrated integrated

assessment modeling of human-environment systems? In

our view the answer is very little and superficial. A recent

study by Darwin [17] illustrates the point. He noted major

differences in the results of his model of the response of the

global agriculture system to climate change depending on

whether the model was run with the regions of the world

disaggregated or with the regions aggregated to the global

level. He clearly demonstrated the importance of scale

resolution in IAMs and opened concern over what the

underlying causes of the scale differences that he encoun-

tered were. This concern raises a serious question about the

providence of projecting the model’s results onto the

dynamic, hierarchically structured real world. This question

applies to all of the IAMs that do not embed hierarchical

structure.

The ultimate worth of IAMs is the value of their

predictions as usable knowledge to decision makers across

a range of levels of spatial scale. IAMs must provide

information to decision makers on levels of scale that

concern them [17]. Cash and Moser [69] reiterate this point.

Highly aggregated predictions of climate change impacts are

little more than idle curiosities to local and regional decision

makers.

From the foregoing discussion we conclude that the

problems of IAMs may extend well beyond the simple

problem of matching the scale of aggregation of results with

the scale of the decision. We assert that the typical structure

of current IAMs, whether bottom-up or top-down, does not

anticipate emergent properties of scale. Having the ability to

detect emergent properties is fundamentally necessary to the

revelation of surprise and the further improvement of
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modeling. Most global IAMs are specified to represent

structure and process at the highest level of the human-

environment system hierarchy. Communication between

levels of scale is primarily top-down (e.g., the determination

of local land use change by change in global agricultural

demand) with very few examples of process information

being conveyed from lower levels to the top. In the few

examples of IAMs that are bottom-up (e.g., Parry et al. [9],

Rosenzweig and Parry [10]), pulses of information from

low-levels to top levels are deterministic and feedbacks from

the top levels (prices) are not explicitly coupled to low-level

behavior.

Root and Schneider’s [6] proposed ‘‘strategic cyclical

scaling paradigm’’ (iterative scaling up and scaling down of

models of different scales of a system) is praiseworthy as a

start in bringing individually modeled components of the

human-environment hierarchy together and testing for the

existence of emergent properties. Techniques being devel-

oped to integrate variables simultaneously across levels of

scale, such as multi-level modeling [70] accomplish the

goal of strategic cycling scaling in a single model. Multi-

levelmodeling potentially provides novel insight into the

evolution of explicit small-scale process into regional

patterns and then into large-scale emergent properties.

The scope of integrated assessment modeling has grown

enormously over the past half decade. It now embraces

efforts ranging widely from modeling individual agent

behavior at a small scale to modeling material, energy and

economic exchanges through the biosphere and economy at

a global scale. The arguments of this paper extend to all

forms of integrated assessment modeling of problems

embedded in systems that necessarily traverse more than

one level of spatial and=or temporal scale.

Finally, the time is at hand to take seriously the arguments

of ecologists and systems theorists that not only does scale

matter but that dealing with issues of scale explicitly is a

fundamental requirement for modeling real world complex-

ity. Absent a multi-scale structure, there is the strong

possibility that IAMs are themselves doomed to be a source

of surprise.
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