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ABSTRACT

Scaling methods in regional integrated assessments are often adopted as givens, when in fact there are a range of methods that each

have their strengths and weaknesses. Methods such as a site within a polygon, spatially uniform grids, grids with relational data on

polygons, interpolation and stochastic spatial models are reviewed for crop-climate modeling of climate change impacts developed

in the European Union’s Clivara project. A similar suite of methods for downscaling from global climate models to local conditions

exists, and is reviewed. Up- and down-scaling issues relate to availability of data, the level of technical expertise in the project team,

validation, uncertainty and risk, stakeholder participation, and modeling of actor-agents. Given the many aims of integrated

assessments, no one approach is best.
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1. INTRODUCTION

All models contain a simplification of the spatial or

temporal scale of the real system, either by averaging or

aggregating small scale elements or by treating large

scale changes as a constant [1–3]. Three examples illustrate

the importance of scale in climate change impact assess-

ment.

First, understanding of crop-climate modelling at the site

scale is far more profound than is readily captured in spatial,

regional models. Yet, spatial shifts in agricultural potential,

demand for water, use of fertiliser and competitiveness are

more profound for agricultural systems than point estimates

of changes in potential yield.

Second, climate change captured in low resolution global

climate models may not relate to the sensitivity of local

climate impacts. Changes in extreme events, such as ground

frost, persistent drought, and ocean-atmosphere anomalies,

are poorly represented in existing models. Yet, such changes

are likely to be more significant than gradual changes in

means.

Third, understanding adaptation requires a new breed of

climate change impact assessment – one that portrays

realistic decision making, environmental, economic and

social signals, and thresholds for action [4]. Scaling between

the cognition of decision agents and their broader environ-

ments will be a considerable challenge.

This paper primarily focuses on methodologies required

to address the first of these demands for understanding scale

in integrated assessment – scaling up impacts. We also

provide an entrée into the literature on downscaling climate.

The discussion introduces issues in scaling agents – a critical

aspect of agent-based simulation.

In many respects, these issues are part of the arcane

toolkit of impacts modeling. However, resolving the scale

issue can make a difference (see, for example, Easterling

et al. [5], Mearns et al. [6, 7]). The CLIVARA project

undertook a European-scale assessment of climate change
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and potential crop production, using high resolution, multi-

scale crop-climate models. On two occasions we have

(subjectively) compared our results with the results from

single-scale spatial models used in global assessments. We

have the diverging results – the global models predict major

adverse impacts of climate change whereas our process-

oriented understanding shows widespread benefits and few

adverse impacts on potential crop production. However,

these comparisons are simply visual – further comparison of

impacts models remains an urgent agenda for research.

2. SCALING UP IMPACTS

This section provides examples of different approaches to

scaling up, drawn from the experience of the Climate

Change, Climatic Variability and Agriculture in Europe

(CLIVARA) project [8].

The choice of scale is part of the process of formulating a

model [9]. For some physical models strong spatial interac-

tions between the principal model variables, such as air

movement between neighbouring grid cells, guide the choice

of an appropriate spatial scale. Such spatial interactions are

limited in agriculture (e.g., competition between plants for

water, pests), although scaling is still present in crop models,

for example, by modelling the average conditions over a small

area and by using average daily weather rather than trying to

reproduce the changes throughout the day.

The techniques described here apply to common methods

in climate change impact assessment, specifically crop-

climate modelling. The focus is on crop phenology and

yield. We assume nutrients will be applied and pests

controlled. Scaling up all of the factors affecting crop

production (e.g., agronomic management) and agricultural

systems (e.g., costs and prices) is more difficult.

Methods for bridging scales range from using available

climate stations to forcing all data, processes and output to a

uniform gridscale and multi-level approaches that embed

reduced form or emulation models (e.g., Polsky and

Easterling [10]).

One aspect of the scaling-up has been to determine the

optimum amount of input data and model runs that are

needed to represent the responses to environmental change

in a ‘region.’ Several studies have discussed this issue, in

particular the regional study on Central England [11] and the

Danish country study [12].

Five approaches for representing variability across space

are illustrated schematically in Figure 1 (see Downing et al.

[2]). Site-driven approaches (Fig. 1(a)) begin with station

data. In contrast, raster grids for the basis for most spatial

modeling [Fig. 1(b)], although much data is held in polygons

rather than grids [Fig. 1(d)]. The two forms can be combined

in various ways [Fig. 1(c–e)].

2.1. Site-Driven Approaches

A common approach in determining regional yields is to

identify sites and soils that can ‘represent’ that region. Such

an approach is generally based on soil polygons for natural

resource data. If soil units cover a large geographic region,

they may be intersected with an agroclimatic index, such as

aridity or agroecological zone, topography (often a proxy for

temperature), or agronomic management regions e.g.,

known land use or irrigated areas.

Each resulting polygon is associated with representative

climate data. Ideally, this would be a station within the

boundaries of the polygon. If this is not available, the climate

data may need to be interpolated from stations outside the

polygon. Or, more simply, the nearest station is used. In

either case, a single site represents the entire polygon. This is

the site=polygon approach.

A slightly more complex approach is the multiple

site=region method. This assumes that several sites can be

used to represent the spatial variability within a region.

Brooks and Semenov [11] investigated how many sites were

required to capture the variability in climatic and soils

parameters for modelling climate change effects on winter

wheat in central England. Analysis of data at numerous sites

in the region indicated that it could be considered as a single

climatic region with three main soil types. Empirical

relationships were then derived between site predictions

from a process-oriented wheat model (Sirius) and observed

regional yield statistics for climate change.

A different interpretation of the multiple site=region

method is illustrated in Davies et al. [13] in a study on the

economic response of potatoes to climate change in England

and Wales. Here, site-based crop and economic models were

applied to 93 meteorological stations in the region for

current conditions and several climate change scenarios.

Model output variables (e.g., yield, gross margins) were then

spatially interpolated from the 93 sites to a 10 km grid across

England and Wales.

In a case study in Denmark [12], correlations using

summer precipitation with 650 precipitation stations identi-

fied regions of Denmark, represented by 6 climate stations.

Fig. 1. Approaches for representing spatial variability in models: (a) site

driven (site=polygon and multiple sites in a polygon); (b) spatial

uniform grids; (c) uniform grids with relational soils (spatially

combined); (d) spatial interpolation; and (e) stochastic space.
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Using the maximum correlation scheme the areas that were

best correlated to each site were identified.

This approach has the benefit of retaining complex soils

data and can readily utilise detailed climate data (e.g., 30-

year daily time series of temperature, solar radiation, wind,

humidity and rainfall) that would be difficult to grid for a

study region. Soils are acknowledged as more important for

crop suitability than local differences in climate. If soil units

are large, then one climate station may not be representative

and the soil units may need to be subdivided by climatic

regions. A site-polygon approach was also adopted in the

regional studies in Hungary [14].

The main technical drawback to site-driven approaches is

the relative complexity of the modelling environment.

Creating and accessing databases in different formats

requires special facilities not generally provided in a

Geographic Information System (GIS) or crop-climate

programmes. Even with generic shells, such as AEGIS

[15], considerable investment is required to set up a study

area and carry out simulations. Even creating a spatial map

of the length of growing period requires fully processing the

crop model for each soil-climate polygon, summarising the

model output, and presenting the resulting statistics for the

soil-climate thematic layer in the GIS. However, the

approach does preserve the original data formats and

integrity.

The conceptual limitations concern notions of space as an

inherent variable. The model only has to be run once for each

soil type and crop management group within each climate

polygon. There is no a priori test for choosing the number of

soil-climate spaces and the number of climate stations

required to represent each polygon. To the extent that long

term change alters present environmental relationships,

choosing ideal polygons for the present situation does not

guarantee an adequate representation of the future.

The estimation of the variance of modelled regional yield

requires the spatial correlation of simulated yields to be

assessed. This can be done for current conditions by running

a model for each database grid using observed weather data

for a given period. However, climate change scenarios

downscaled to sites generally are not spatially correlated and

so cannot be used to investigate the future yield covariance

structure. This is true for scenarios constructed using a

weather generator to produce independent time series of

synthetic weather data for each site (but see the spatial

weather generator in Semenov and Brooks [16]). Regional

climate models are another approach gaining popularity, but

at some expense in terms of data handling.

2.1.1. Central England Case Study

A study has been conducted using the soil=polygon

approach in Central England [11]. The methodology

involves predicting regional yield under future climate by

scaling-up output from a site-based wheat model. Limited

site information is assumed to be available so that the

method is applicable in most circumstances; only soil data

for the region and detailed weather data at a few sites are

required. The predictions of yield assume good management

and the absence of pests and diseases with spatial variations

in modelled yield therefore being due to differences in

weather and soil conditions throughout the region.

The first step was to investigate the relationships between

the input and output variables of the Sirius wheat model by

conducting a comprehensive sensitivity assessment. Next, a

simpler model was constructed based on an analysis of the

inherent relationships within the Sirius model and results

from the sensitivity assessment. The model was able to

reproduce the Sirius yields closely for a variety of UK

conditions. Test data sets with a wide range of yields

produced root mean square errors of around 800 kg ha�1,

compared to standard deviations in the Sirius model of some

2000 kg ha�1. Correlations were above 0.90.

The methodology consists of identifying the areas within

the given region that have similar soil-weather character-

istics. Unless the region is very large, contains major

topographical features or a vast diversity of soil types, there

will only be a few such soil-weather combinations.

Predictions of regional yield are then made by combining

site-scale Sirius predictions for each soil-weather combina-

tion with predictions of the inter-site correlation pattern. The

mean regional yield is simply defined as the weighted sum of

the mean site yields. When data from only a few sites are

available the yields across the region must be inferred using

this data. In particular, areas that are considered to have

similar weather and soil conditions are likely to show a

similar change in yield and can be considered as one large

site.

It was necessary to assess the relationships between the

site weather data and the site soils data. A sensitivity analysis

on the full mechanistic winter wheat model and resulting

simpler model showed that the single important soil variable,

under non-nitrogen limiting conditions is the total available

water capacity. Different soils can therefore be grouped

together if their water capacities are similar.

Those areas identified as having similar climates and soils

are considered as a single large site in the estimation of the

mean and variance of regional yield. This overcomes the

need to simulate each individual farm within the region.

The mean regional yield is calculated for present and future

climatic conditions for each different soil-climate combina-

tion. This is undertaken using the Sirius model with

synthetic weather data produced by the LARS-WG stochas-

tic weather generator (see Barrow et al. [17]). The estimation

of the variance of regional yield requires the spatial

correlation of the simulated yields to be assessed.

The close correspondence of the weather characteristics of

the sites means that they can be grouped together. Since the

topography of the region is fairly homogeneous, the whole

region’s weather can be represented by just one site. There is a

slight temperature gradient from north to south and a
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precipitation gradient from west to east for the three sites.

Hence, a centrally situated site would be the most representa-

tive. However, the weather database does not contain such a

site with observed weather data for 1960–1990 and so,

instead, the site of Oxford was chosen as it has a complete

record and site climate change scenarios are available.

The input parameters used for the three sites were the

same and so the differences in synthetic yield are entirely

due to the different weather data at the three sites. The

analysis of the weather data indicated that the systematic

differences were small and so the region could be considered

as experiencing a single climate. Furthermore, the random

differences were not sufficiently great that they needed to be

modelled explicitly. The comparison of yields supports this

conclusion with small differences between the sites. The

sensitivity analysis showed that small random differences in

weather could produce significant differences in yield and,

thus, the differences in yield observed here are consistent

with small random differences between the sites.

The recorded regional yield data only covers the period

1974–1979 and 1983–1995 and will be influenced by a

number of factors that are not included in this study,

particularly the effects of pests and diseases and changes in

management practices and technology. This prevents a

meaningful comparison with the mean and standard

deviation of yields modelled for central England.

However, a limited validation can be made by examining

the yield pattern across the region. Actual yields should

contain a climate signal and a comparison of regional yields

across Britain shows that there are strong correlations

between yields of nearby regions. This is consistent with the

model analysis in that yield is related to cumulative values of

the climate variables and that many of the relationships are

approximately linear so that the relationship of yield to

climate should not have large discontinuities. The similarity

of the climate across Britain means that there should not be

large differences in the climate related effects on yield.

The methodology produces the most accurate prediction

of the regional yield variance by combining the weather

generated climate scenarios and the observed climate data.

However, this prevents an analysis of the distribution of

regional yields or of the statistical significance of the results.

An indication of the likely shape of the distribution of

regional yield can be obtained from the observed data by

multiplying the predicted yields for each year for the three

soil types by the soil relative area values to give a simulated

regional yield. The lack of data (only 30 values) and the fact

that the climate change scenario does not include changes in

variability limits the value of such results. The simulated

regional yield distributions for the observed data and for the

observed data adjusted for the two scenarios of climate

change are slightly negatively skewed. The skewness

probably results from several of the years being at or close

to potential yield so that variations in water deficit between

those years have no effect on yield.

2.2. Uniform Grid Approach

The most common approach to linking GIS and crop models

is to convert all of the input data into raster grid databases

with uniform pixel size and geographical co-ordinates. The

original data need to be interpolated to the raster grid. Data

with irregular boundaries such as soil data are forced to

match the grid. The site-based crop model (or a simplified

version) is then applied consecutively to each grid cell in the

region.

The resolution is generally chosen based on the avail-

ability of data, resulting size of database and computing

resources. Ideally the resolution would reflect the sensi-

tivity of model results to spatial variation and disconti-

nuities as well as corresponding to the accuracy of the input

data.

Recent examples of this method are studies that have

applied complex site crop models to relatively fine grids at

national scales. Carter et al. [18] applied the CERES-Wheat

and POTATOS site-based crop models to data held in a

network of 3827 grid boxes at a 10�10 km resolution across

Finland. The application of simplified and complex site

models to gridded input data has been deomonstrated by

Rounsevell et al. [19].

The European study in CLIVARA also used this approach

by applying a simplified crop model to gridded climatolo-

gical and soil data [20].

Gridded models generally require converting site models

to a regional scale model and using aggregated regional

inputs. Model parameters and inputs need to be scaled, by

running the model throughout the region either by using

interpolated inputs or by dividing the region into sub-regions

with the same characteristics.

At the site level, detailed crop-climate models simulate

plant responses to a wide variety of environmental and

management changes. These results are used to calibrate

parameters in more generic, reduced-form models that run

on the spatial data (e.g., EuroWheat at the European scale

[20].

Brisson et al. [21] studied large scale spatial variations in

maize suitability in France. The main aim was to build a crop

model (GOA-Maize) with the minimum of biological detail

needed to produce useful information for decision making

and which is able to use readily available input data. The

model was applied to climatic data on a ten-day time step at

a gridded resolution of 20 km2.

Brignall and Rounsevell [22] developed a simple model

to assess the effects of climate change on winter wheat

potential in England and Wales. This classified crop

performance into well-suited, moderate, marginal or

unsuited based on calculations of machinery work days

and drought stress.

Two reduced-form models were developed by Wolf [23,

24] and compared with output from complex site-based

models under current and future climatic conditions. The
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POTATOS reduced-form potato model was compared with

the NPOTATO site model, whilst the SOYBEANW reduced-

form soya bean model was compared with the SOYGRO site

model. Results were highly variable showing that the models

produced similar responses at some sites and under some

climate change scenarios, but quite different results at

others.

The main advantage of the gridded methods is that it is

relatively simple once data have been converted to the grid.

The principal disadvantage is the lost connection between

the input data and model processes. The original data is

simplified and generalised to fit the grid. For example, daily

rainfall is reduced to monthly time series and crop-climate

models are simplified to work at this scale. If a very high

resolution is chosen, the required computer resources (data

storage and processing time) generally limit the number of

simulations attempted. Since the original data are not

available to the model, testing of model sensitivity and

uncertainty may be reduced, especially if each run requires

significant computing resources.

The disadvantages are especially important in treating

soil information. In Figure 1(b), soil types do not correspond

to the imposed grid – some grid cells have more than one

soil. Refining the grid to correspond more closely to the soil

boundaries is possible, but would dramatically increase the

size of the database, as the same information is duplicated

for many pixels – there are fewer soils than there are grid

cells.

Where more than one soil is present in a pixel, often the

dominant soil type is gridded and other soils in the grid or

associated soil types are not included in further modelling.

Alternatively, the best soil is gridded, although the definition

of best would vary by crop and season. Another approach is

for soil properties (such as water holding capacity) to be

averaged, based on their prevalence in each pixel. However,

this may result in quite unrealistic input data if the soil types

are quite distinct. Some soils will be unsuited for agriculture

and can be masked from the database. Input soil databases

for each soil can be prepared and models run for every soil

type. The output would still have to be aggregated to the

pixel level, generally using a weighted average or stochastic

dominance criteria.

2.2.1. European Case Study

Simplified crop simulation models for wheat, potato and

grapevine have been either developed or adapted for

application at the continental scale [20]. These reduced-

form models approximate the behaviour of complex site-

based models, but require less demanding input and

calibration data. The models were combined with the use

of statistical functions to temporally downscale climatic

input variables from the monthly to daily resolution. A GIS

was used to run each model across spatial data sets

interpolated to a regular 0.5� latitude=longitude grid. Each

0.5� grid cell was assumed to represent a homogeneous

region and the model was applied independently to each

cell.

Results from these models provide a continental overview

of the effects of climate change on crop suitability and

productivity. The performance of the continental scale

models in simulating current regional variations in crop

productivity was evaluated against observed agricultural

statistics. Ratios for calculating actual yields from simulated

water-limited yields were available for wheat and potato

[25]. This allowed a comparison of the range of simulated

yields in all grids in any country with the observed yields and

gave a satisfactory validation of the models.

The effects of climate change on wheat, potato and

grapevine production across Europe was investigated using

two climate change scenarios from global climate models

(GCMs) for the year 2050. Spatial uncertainties in crop

responses, which are attributable to uncertainties in

GCM projections of future climate, were also quantified

for wheat.

The scaling-up method involved the application of

reduced-form mechanistic crop models to spatially gridded

input datasets. Various statistical functions were explored for

temporally downscaling the relevant climatic input variables

(minimum and maximum temperatures and solar radiation)

from the monthly to daily resolution (Fig. 2).

A GIS was used to run each model across the spatial data

sets interpolated to a regular 0.5� latitude=longitude grid.

Results were aggregated to the country level, providing

estimates of the impact of climate change on agroclimatic

environments across Europe and a statistical test of

significant differences from the present to the scenarios of

future yields (Fig. 3).

2.3. Spatially Combined: Uniform Grids

with Relational Soils

An alternative to uniform grids is to hold soil data as a

relational database. Each grid cell points to a database of

soils to look up all the soils that are found in that grid cell.

This can provide access to richer soils data. Connections to

representative soil profiles for each soil unit can add

information for soil layers.

Conversely soil data can be gridded and climate overlaid

as polygons (as in Olesen et al. [12]).

This approach improves upon uniform grids by facilitat-

ing access to complex soils data and eliminating redundant

soil data for each pixel. Linking the raster (gridded climate)

and vector (soil polygon) data requires some programming

and may not be easy to do within standard GIS packages.

A variation of the grid approaches is to sample the grid.

The baseline conditions can be modelled on a uniform grid

with a high resolution (provided the underlying data are of

sufficient quality). Scenarios of climate (or other) change

can then be modelled on the basis of a sample of the baseline

grid. Some a priori tests of the model response surfaces
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should illuminate an optimal grid for sampling. For instance,

the slope of the model response (yield) can be mapped and

related to the model input data (to-pography, mean climate,

soils). Agroecological regions can be defined based on the

model response surface, rather than on the input data.

It is likely that the change in model responses (e.g., the

difference between baseline yield and yields with climate

change) are easier to model and require fewer sample points

than actual yields.

The results need to be interpolated to the original grid.

Two approaches are:

1. Distance interpolations: The actual values for the sample

results are interpolated based on distance-weighted

distributions.

2. Mean anomalies: As is often done for climate time series,

the sampled results are expressed as deviations from the

baseline average. The anomalies are interpolated to the

study area grid, then converted back to actual units.

Butterfield et al. [26] compared the spatially gridded inputs

and spatially combined inputs approaches for modelling

climate change impacts on wheat in Great Britain. Climatic

data and data for the dominant soil type was initially

interpolated to a 10 by 10 km grid. The Sirius wheat model

was then applied to the 2,840 grid cells in the region. The

model was then rerun using the spatially combined inputs

approach for 12,924 unique soil=climate polygons in the

region. The comparison showed that model output from the

two approaches was not statistically different for current

climatic conditions. Hence, the authors recommended the

gridded input approach for their study as this was more

computationally efficient.

Brklacich et al. [27] used a similar approach in a study of

agricultural land rating in the Mackenzie Basin in northwest

Canada. Climate data were gridded at a 10 km resolution and

soils data were held in polygons at the 1:1 million scale. To

reduce the number of calculations the climate associated

with the 10 by 10 km grid cell closest to the centroid of each

soil polygon was used.

The AEGIS (Agricultural and Environmental Geographic

Information System) approach [28] is comparable to that of

Brklacich et al. [27], except that a representative meteor-

ological station within each soil polygon is utilised. If a

meteorological station is not available within the boundaries

of the polygon then the nearest station is used. AEGIS

contains the DSSAT suite of site crop models in a PC GIS-

based environment and is designed as a regional decision

support system for policy making in agriculture.

Van Lanen et al. [25] combined three types of data held in

polygons to study crop growth potential in the European

Union. Here, the authors defined 4,200 Land Evaluation

Units (LEUs). Each LEU was a unique combination of a soil

unit, a representative meteorological station for each of 109

agro-climatic zones and administrative regions. Qualitative

(based on expert knowledge) and quantitative (based on crop

simulation models) land evaluation methods were then

applied to each LEU to determine the current potential

suitability and productivity of wheat.

This approach is a compromise between running every-

thing at a high resolution and formal hierarchical model

designs. The sample frame may vary depending on the

modelled process. For instance, crop phenology requires

fewer sample points than soil water processes (e.g.,

infiltration, runoff, erosion), while changes in yield are

somewhere between these two extremes. The sample frame

is likely to reflect soil and agroecological spaces, as noted in

creating soil-climate polygons. Denser sample networks are

required where model responses are more variable. Statis-

tical methods for sample design and validation are well

developed and can measure the errors associated with

various sample designs.

2.3.1. Great Britain Case Study

The example for Great Britain [26] used soil polygons

overlaid on a 10 by 10 km monthly climate grid (Fig. 4). To

determine the necessary spatial resolution, yields were

calculated as averages for each grid and as the yield of the

dominant soil in each grid. The effect on yields of using a

Fig. 2. Comparison of the mean duration of (a) the grain filling period (in days) and (b) mean grain yield (in t ha�1) calculated using observed daily data and

daily data estimated using a sine curve interpolation routine at 175 sites.
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dominant soil per climate grid rather than all soil polygons in

a grid was not significant. The spatial patterns were

compared using a polynomial equation to relate the pattern

to the x, y grid using generalised least squares. Using a cubic

polynomial to describe the spatial pattern of the dominant

yield per grid and the average yield per grid showed that the

intercept (an x, y coordinate) and other coefficients of the

models, relating to the x and y coordinates, were not

significantly different at the 5% level. There is, therefore, a

very high probability that the spatial patterns were not

different.

Another methodological issue is how climate data should

be downscaled from the monthly to the daily time scale.

Downscaling from monthly to daily climate data using the

Brooks sine curve interpolations on monthly temperature

and radiation data have been successfully tested for Sirius

using Great Britain sites (reported above, see Harrison et al.

[20]).

Fig. 3. Change in mean water-limited wheat yield (from the 1961–1990 baseline) for ten European countries due to natural climatic variability (noise; left

bar; n¼ 7) and due to climate change by 2050 under the IS92a emissions scenario (REF; middle bar; n¼ 4) and the IS92d emissions scenario (IS92d;

right bar; n¼ 4). Atmospheric CO2 concentration is: (top) held constant at 334 ppmv; and (bottom) increased to 515 ppmv for the REF scenarios and

to 435 ppmv for the IS92d scenarios. Horizontal lines show the maximum, minimum and median estimates for each scenario. Countries where climate

change causes a significant (95 percent significance from a two-tailed t-test) change in yield are marked with a black dot for the median estimate

(Source: Harrison et al. [20]).
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Other methods of downscaling including use of weather

generators were also tested. Daily precipitation was derived

in the Great Britain study from monthly totals and mean

number of rain days. Mean rain per rainy day was distributed

randomly to days in the month. Observed daily site climate

data were used with polygon soil data to test the downscaling

method. This involved running the model on the 26-year

observed precipitation data then averaging the data to give

monthly values and using the downscaling approach to

derived daily values and rerun the model. The combined

effect of down-scaling temperature and radiation (using

the sine curve) as well as downscaling precipitation as

described was also tested using the observed daily data at the

six sites.

The results across the six sites indicate that although the

maximum difference in any year may be up to 2.9 t ha�1 the

mean is always less than 0.6 t ha�1 (Table 1). As our monthly

database is a 1961–1990 average, the error due to down-

scaling the monthly data is equivalent to this mean. The

same approach for downscaling data was applied for the

POTATOS model and errors were found to be insignificant.

For the grapevine model differences between using

observed and estimated daily data of temperature and

radiation were calculated using data from the five test

vineyards to check that large errors would not be introduced

into the grapevine model output by using downscaled

climatic data. Errors were found to be highly insignificant,

with all R2 values greater than 0.95.

Fig. 4. Schema showing the approaches for the spatial application of crops models in Great Britain (Source: Butterfield et al. [29]).

174 T.E. DOWNING ET AL.



Variation across regional modelled yields seems con-

servative when looking at regional averages, but the

maximum and minimum figures indicate the wide range

being predicted across these large regions. For the purposes

of validation the correlation coefficient for modelled yields

against observed yields adjusted to 1990 levels for all

English and Welsh counties was calculated and found to be

close to zero. This occurred because the higher than

expected modelled yields in the west and lower than

expected modelled yields in the east that are skewing the

data. In general the model is giving reasonable estimates of

water-limited yield in most areas considering that the model

does not take into account the effect of pests, diseases or

weeds. As with all model estimates there is a difference

between ‘potential’ (maximum possible yield) and ‘actual’

yield (those seen in the field). Comparing the 1990 baseline

yields with the Sirius model results actual yield can be

estimated as 0.6 of the potential yield. Although the range in

mean yield across the regions is close in magnitude for the

modelled and survey yields (0.7 t ha�1 compared with 0.45 t

ha�1), the range in modelled and survey yields when looking

at the county scale is larger (3.3 t ha�1 compared with 1.3 t

ha�1). This is important in terms of our confidence in

predicting ‘regional’ yields and also may contribute to

improving the application of mechanistic models at these

scales.

Validation of the results is limited because of the

temporally averaged climate data (it was not possible to

simulate results for individual years which could be

compared with yearly crop statistics). The Ministry of

Agriculture, Fisheries and Food (MAFF) survey data are

very limited at the county level and only five years of survey

data were available for county validation. The high

sensitivity of the Sirius model to available soil water causes

winter wheat yields to be lower than expected in some areas

of East Anglia although when the mean of the Eastern region

was calculated it gave the highest mean of all regions. Very

high modelled yields in areas close to those marginal to

production due to excess winter precipitation and difficulties

in working the land also gave cause for concern. These

problems could be overcome if some allowance for excess

water or impact of high summer rainfall on lodging were

included in the model.

Aggregation of the results to the regional level gives

confidence in this approach (Table 1). The range in mean

yield over all the English regions (for the 1961-90 mean

climatology) is small as is that seen in the MAFF survey

yields (average of five years). In recent years yields are also

becoming comparable with the model yields and observed

farm maximum yields are comparable to model maximums.

Such an assessment at the county and regional scales would

not be feasible using a traditional site-based approach to

crop modelling. The spatial aspects of the approach gives

knowledge on possible new areas of expansion for produc-

tion of specific crops (e.g., grapevine) and shifts in the

optimal locations for production of traditional crops in the

future. This information is difficult to gain using a site-based

approach.

The method described limits the model output to long

term period means. When all climate variables in the gridded

climatology are available as a time series it will be possible

to conduct a time-series analysis for comparison of yields

year-by-year. Not only will this improve the model

validation, it will also allow assessment of the year-to-year

variability in yields, which is of particular benefit in the

assessment of risk when considering production of novel

crops.

2.4. Spatial Interpolation Approach

Spatial interpolation techniques (e.g., kriging, neural net-

work) can be used to estimate model outputs at unsampled

sites. Spatial interpolation is also used for preparing

irregularly scattered data to construct contour maps or

contour surfaces. Both create a regular grid of interpolated

points. The selected spatial interpolation methods differ in

Table 1. Modelled mean, maximum and minimum yields calculated for MAFF’s Government Office Region. Survey data for county average collated into

regions and adjusted to 1990 levels. Observed 1997 and 1998 survey yields and average of 10 highest farm yields in the survey for 1997.

SIRIUS Model results MAFF statistics

Model

mean

Regional

max

Regional

min

Average

county

standard

deviation

Average

survey

yields

adjusted

to 1990

1997

survey

yields

1998

survey

yields

Max

survey

yield 1997

North East 9.99 13.07 7.06 1.27 6.23 6.47 6.81 8.64

Yorkshire and the Humber 10.53 12.76 5.94 1.13 6.09 6.81 6.51 10.29

East Midlands 9.99 12.20 5.65 1.31 5.90 6.73 7.61 10.5

Eastern 10.69 12.57 5.92 1.12 6.11 7.18 7.71 10.28

South East and London 9.97 13.05 5.92 1.34 5.93 6.79 7.14 11.25

South West 10.16 13.61 5.34 1.23 5.78 5.53 8.16 9.37

West Midlands 10.33 12.53 5.74 1.30 5.90 6.53 7.34 12.05

North West and Merseyside 10.01 13.52 5.72 1.50 6.15 3.87 6.59 8.64
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their assumptions, local or global perspective, and determi-

nistic or stochastic nature.

Using crop models developed for simulating point

responses to predict regional yields has raised the question

of whether to spatially interpolate inputs and run the model

for every interpolated point or run the model for points

where there are inputs and then spatially interpolate model

outputs variables. The quality of the results obtained using

these two approaches is mainly due to the degree of non-

linearity of the model, as well as the spatial structure of the

inputs. Unfortunately, the process of extending point model

estimates on the land surface is often complex and nearly

impossible in very irregular terrain.

Different spatial interpolation techniques can be used for

eco-climatic classification (e.g., fuzzy classification of

remotely sensed imageries, kriging, splining, etc.) [30, 31].

Accordingly, it is possible to hypothesise that these techniques

can provide information on the spatial distribution of outputs

from crop simulation models. The extent to which these

approaches can be used to estimate crop productivity, derived

from crop simulation models, in complex terrain is, however,

mostly unknown. In particular, there is a lack of methods that

use satellite images and ancillary data (elevation, distance

from the sea, latitude, etc.) for spatially extending model

parameters computed at ground stations (i.e., the duration of

phenological stages, yield etc., see Bindi et al. [32]).

Following these considerations different sources of

information (remotely sensed imageries, morphological

and geographical data) have been used to link site crop

simulation model outputs to their spatial regional distribu-

tion. Specifically, crop model parameters are extended

between meteorological sites over a region using three

spatial interpolation techniques (fuzzy classification, kri-

ging, neural network). This method assumes that estimated

parameters are spatially autocorrelated, and also that they

are mainly determined by eco-climatic factors which also

drive global vegetative development. Kriging and neural

network approaches are used to find the spatial correlation of

model output variables; whilst Normalised Difference

Vegetation Index (NDVI) profiles provide information for

the eco-climatic factors. Climate data are available from

stations evenly distributed over a specified region and

environmental data on altitude, latitude and slope are also

required. Digital terrain model (DTM) data is required to

provide information on the surface conditions.

One technique to interpolate over space is to use a spatial

production function. Site model results can be used to derive

regional statistical predictor functions of the relationships

between yield, technology and climate. An emulator can

derive the response surface from multiple runs of the site

model, using statistical techniques (e.g., Buck et al. [33]). A

reduced form model based on the results of the Sirius winter

wheat model was developed in the Central England study

[11]. Specific needs arise when the available data resolution

is too coarse for input into models (e.g., daily climate data

being derived from monthly means); insufficient data are

available at the required resolution or when historic data

records are insufficient (weather generators, also used to

apply scenario changes).

Statistical predictor functions can be derived between

sample site results and gridded data. The statistical formula

is used to interpolate the model results to the original grid.

For example in a study on wheat and soya bean in Spain [34]

statistical analyses were used to derive yield response

functions from the results of temperature, precipitation and

CO2 sensitivity runs conducted at seven sites which were

chosen to represent the agro-climatic regions of Spain.

Agricultural response functions were then developed from

these site-specific results and applied to monthly climatic

input data on a 10 by 10 km grid across Spain for current

conditions and several climate change scenarios.

The advantages of the spatial interpolation approach are

that spatial relationships are taken into account as well as

eco-climatic factors. The disadvantages are the requirement

of satellite NDVI data and DTM data. Advanced processing

methods are also required.

2.4.1. Tuscany, Italy Case Study

Most studies on the impacts of climate change on natural

vegetation and agricultural crops have been undertaken at

two spatial scales. First, experiments on the effects of

elevated atmospheric CO2 concentration and higher tem-

peratures on plant growth and yield have been performed at

the plant level using different system facilities (e.g., growth

chambers, open top chambers, plastic tunnels, FACE) (see

Van de Geijn et al. [35]). Considerable work has also been

done at this site level using growth simulation models.

Models use the knowledge gained from experimental studies

to systematically investigate the effects of future climate

predictions from global climate models (GCMs) on crops,

including appropriate response strategies. Second, a few

studies have been conducted on the impact of climate change

at the regional scale by linking crop simulation models to

spatial interpolation techniques. Thus, in order to investigate

the effects of climate change and climatic variability on crop

productivity at the regional scale a method is needed to

estimate crop model parameters in the area between ground-

based meteorological stations.

To address these issues a methodology has been

developed and tested for extending the output from a

grapevine model over a spatially complex region in central

Italy (Tuscany) [32]. The method has been used to evaluate

the regional response of grapevines to climate change.

The grapevine model was calibrated using field and

climatic data for three experimental stations located in

Tuscany. It was then applied at 67 sites for both current and

future climatic conditions. Present and future climate

datasets for 31 years were produced using the LARS

stochastic weather generator [36] calibrated on observed

historical weather data and output from GCMs, respectively.
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Different methods for spatialising the site model output

variables were evaluated and used to investigate the effects

of climate change on viticultural production at the regional

scale. Three methods were tested for spatialising the means

and coefficients of variation (CV) of model output variables

computed for 31 years at the 67 sites. Specifically, a fuzzy

classification approach was utilised for processing the

remotely sensed data and a kriging approach was used to

explore the spatial variation of model parameters and their

extension over the land surface. A method for statistically

combining the results of the fuzzy classification and kriging

procedures was also investigated in order to optimise the

estimation process. The third method examined the possi-

bility of using neural networks for spatialising the means and

coefficients of variation (CV) of output variables from the

grapevine model.

Errors associated with the different methods have been

quantified and indicate that all three methods provide

satisfactory and similar estimates of mean model output

variables. Alternatively, only the neural network approach

was able to accurately estimate the CV of model variables.

The regional grapevine model was validated in two steps.

Firstly, by comparison with model outputs from the original

site-based simulation study (see Bindi et al. [32] for details)

and, secondly, by comparison with observed data obtained

from the Agrometeorological Service of Tuscany, Institutes

of Agricultural Ministry and private consortia of the most

important viticultural areas of Tuscany. The date of

physiological maturity is predicted to occur from the middle

of August in the valleys to the middle of October on the

upper hills of Tuscany. These estimates are in reasonable

agreement with the observed data, although the estimates

show a lower spatial variability (Fig. 5).

The model is also able to reproduce the correct spatial

pattern of yield and acid and sugar concentration, although

simulated values tend to be slightly lower and have a lower

spatial variability. This lower spatial variability of the model

outputs is due essentially to the methodologies used to

extend the site model output parameters (i.e., neural

networks) and to generate the synthetic weather data

(LARS-WG). Both these methodologies tend to smooth

extreme values resulting in lower variability.

Two climate change scenarios were used from the Hadley

Centre’s HadCM2 GCM. These were mean climatic changes

from the greenhouse gas only experiment (HCGG) and the

greenhouse gas and sulphate aerosol experiment (HCGS).

The model was run using a CO2 concentration of 353 ppmv

for the baseline and 515 ppmv for the climate change

scenarios. Model parameters were adjusted to account for

the direct effects of elevated CO2, using results from free air

carbon dioxide enrichment (FACE) experiments. Results are

available for mean and variance of phenology, yield and

quality characteristics of the grapevine.

2.5. Stochastic Space Approach

In this approach the variability over geographic space is

estimated using remote sensing (see Delécolle [37]). This

method is achieved by estimating the current variability of

crop conditions over a region by remote sensing. A

Fig. 5. Comparison between simulated model output variables (Sim) and the observed statistical data (Obs) for the three major viticultural landscapes in

Tuscany: (a) date of maturity, (b) fruit dry matter, (c) acid content, and (d) sugar content (Source: Bindi et al. [32]).
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stochastic parameterisation of a crop model is then derived.

The advantages of this method are the possibility of quick

estimation of regional field-by-field variability of crop

conditions. The method assumes no explicit soil variability,

a single sowing date and equal climate across the region.

Daily weather data are required at the regional scale. The

advantages are that a quick estimation of regional field-by-

field variability of crop conditions is possible. This source

of variability, which can be considered as a buffer to cli-

mate change, is not possible to identify with any other

method. The disadvantage is that high resolution infra red

remote sensing data is expensive and processing is time

consuming.

2.5.1. Paris Basin, France Case Study

Mechanistic crop models are, in general, adapted to the field

scale. There are numerous examples of applications of crop

models at this scale. In this study, a field is considered to be a

homogeneous entity (without spatial variability) and is

described by the type of crop planted (species, variety) and a

collection of practices and events (sowing date and density,

dates and amounts of fertiliser applications, etc.). A region

Fig. 6. Flow chart showing the three types of calibration undertaken for STICS-Wheat and their application (Source: Delécolle [37]).
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can be represented as a mosaic of individual fields. Hence,

mechanistic crop models can be used to simulate regional

production by running a model for each field within a region.

However, this assumes that the information required to

calibrate the model is available for every field, which is

generally not the case. Thus, regional studies often assume

that a region is a large field and define equivalent regional

crop state variables and parameters before directly applying

a site crop model. Such equivalent values cannot be

measured, only calibrated, and are generally meaningless.

An alternative method, adopted in the Paris Basin study

[37], is to introduce the spatial variability of crop conditions

within a region as distributions of related crop parameters

into the site process model (Fig. 6). Scaling-up from the site

to the regional scale therefore involves estimating joint

probability laws (including correlations) for all model

parameters. Distributions of crop state variables or final

production is then established by generating sets of

parameters through a Monte-Carlo scheme [38], and running

the model for each of these parameter sets and regional

values of the input (climate) variables. The shape of the

distribution of model outputs indicates the variability and

stability of yields within the region. It is thus possible to

determine whether the spatial diversity within a region

represents a source of resilience to changing climatic

conditions or whether it is likely to amplify the impacts of

climate change.

The principle of this method is that regional models can

be stochastic versions of standard site crop models.

Stochasticity is provided by treating some of the model

parameters as random variables rather than fixed values.

Each field planted with a given crop species in a region is

associated with a single set of conditions (genotype,

management, soil) which can be translated into values of

related parameters in a crop model. Calibrating the model

for all fields therefore provides a collection of values for

these parameters, which can be used to construct empirical

distributions. Such a detailed model calibration is made

possible by using scenes of the region provided by high

resolution satellites, giving access to field-by-field informa-

tion at certain times over the whole region.

The impacts of climate change are simulated at the

regional scale by taking P values of model parameters

at random from the estimated empirical distributions

Fig. 7. Simulated distributions of yield for the observed climate (first row) and the generated baseline climate (second row), using the distributed calibration

method (first column) and the average calibration method (second column) (Source: Delécolle [37]).
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(representing spatial variability). Each model configuration

is then fed with N years of climate data generated from a

scenario of climate change (representing temporal varia-

bility). The result is a distribution of N � P yield values,

which illustrate the yield response of the region to the

change in climate, assuming management conditions remain

the same.

Four steps were undertaken to develop the method:

1. Automatic segmentation of the region into individual

fields.

2. Selection of an appropriate site crop model for winter

wheat.

3. Construction of the regional model, calibrated on present

conditions.

4. Application of the regional model to climate change

scenarios.

The average and distributed model calibrations produce

comparable results for the Paris Basin region under both

current and future climatic conditions (Fig. 7). This means

that, in general, results are similar if the model parameters

are averaged or if the model output from the ten individual

fields is averaged (implying some linearity in processes).

The first solution of averaging model parameters is much

less expensive in terms of run time. A different conclusion

may have been reached if other model parameters had been

selected for calibration. Data from ten surveyed fields were

available to produce the distributed calibration. A different

number of sample fields may also cause different results, as

might a denser time profile of observed dry matter.

Different results are produced by the average and

distributed calibrations for extreme yield values. However,

the probability of yields being greater than 8 t ha�1 under the

observed climate is 5% for the distributed calibration and 0%

for the average calibration. For the generated baseline

climate, the respective scores are 9 and 5%. This must be put

together with the changes in yield distribution according to

the climatic input (as expected from Semenov and Porter

[39]). As no real change in distribution tails is induced by the

scenario-generated climates, the distributed calibration

allows more indepth analysis of extreme values.

The stochastic calibration method produces different

values for model parameters than the average and distributed

calibration methods for all climatic datasets (i.e., observed,

generated baseline and climate change scenarios). This is

because different crop state variables are used in the

calibration procedures, satellite-estimated LAIs for the

stochastic calibration and measured above-ground dry

matter for the average and distributed calibrations. The

number of time replications available for each variable also

differs between the calibration methods.

This method could be used in alternative applications

to climate change impact assessment, such as simulating

the time evolution of agricultural landscapes. Its tract-

ability nevertheless relies on the frequent availability of

high-resolution satellite images during the crop-growing

season. When the frequency of images is insufficient they

must be supplemented by low resolution more frequent

scenes, but transfers between different resolutions are still

uncertain.

3. DOWNSCALING

Downscaling involves the translation of coarse resolution

model outputs to finer resolutions corresponding to real

space and time. The business of downscaling blossomed

with the use of General Circulation Model (GCM) scenarios

to chart the impacts of climate change. Thus it is usually

with respect to GCM output that downscaling is applied;

however, the term can apply equally to other attempts to re-

express large-scale information in a form more relevant at

the small (temporal and=or spatial) scale.

The first generation of GCMs had resolutions on the order

of 5 degrees latitude and longitude, clearly too broad-scale to

instil much confidence in local or even regional changes.

While newer models have higher resolutions, approaching 2

degrees or 200 km, these scales are still orders of magnitude

larger than the typical impact unit and issues of downscaling

are still relevant.

This section provides a brief review of the main methods.

3.1. Overview of Methods

Downscaling techniques can be classified into three types

according to complexity and computational demands (other

typologies are possible – see for example Wilby and Wigley

[40], Xu [41]): simple downscaling, statistical downscaling

(and sub-types) and dynamical downscaling. These cate-

gories are summarised in Table 2.

3.1.1. Simple Downscaling

The crudest approach to downscaling is to apply the large-

scale GCM climate change outputs to observed climate at

the scale of interest. In a typical approach, GCM data for

some period in the future are first expressed as ‘‘change

fields’’ relative to the GCM climatology over a period in the

recent past (e.g., 1961–1990.) This removes many biases in

the GCM climatology from the scenario.

The GCM change fields are then used to adjust an

observed ‘‘baseline’’ climate dataset, representative of the

same climatological period (e.g., 1961–1990), usually in a

simple additive manner. At a single site, the baseline is likely

to be a meteorological record. Where spatial scenarios are

required, GCM change fields are usually added to a gridded

data set of surface climate variables. GCM data are either

used as is, or can be interpolated to appropriate grid

resolution (or the location of interest) and then applied.

To date, simple downscaling has primarily been applied

using changes in meant monthly or seasonal climate, but

changes in variance of monthly climate can also be

incorporated (e.g., Hulme and Jenkins [42]). Similarly, with

180 T.E. DOWNING ET AL.



more daily data from GCMs becoming available, changes in

the variance of daily climate can also be incorporated.

Simple downscaling has several advantages, the main one

being that it is quick and easy, enabling rapid comparison of

data from more than one GCM simulation – either GCMs

from different modelling centres and=or ensemble members

from the same modelling centre [43].

There are several potential disadvantages to simple

downscaling. Data that are readily available are typically

only at monthly resolution, therefore provide no information

about changes in the structure of daily climate, especially

rainfall; even if daily data are available from GCM

simulations, their probability distribution functions fre-

quently bear little relation to the real world, raising the

question of whether the method is appropriate at daily

resolutions. The approach clearly cannot capture sub-GCM

grid-scale changes in meteorology. This is particularly so

with rainfall, where sub-grid precipitation and cloud

processes are a major source of error and=or uncertainty.

3.1.2. Dynamical Downscaling

Dynamical downscaling attempts to overcome some of the

spatial limitations of simple downscaling by explicitly

modelling the climate at higher resolution than standard

GCMs. This permits the inclusion of realistic topography

and land-sea configurations, and in some cases, improved

dynamical processes. Currently, these approaches have a

maximum spatial resolution of 20–50 km, so there remains a

scale mismatch where local-scale climate information is

required. These scale mismatches will reduce with time, as

the spatial scale of regional models continue to improve with

increases in computing power.

There are two main approaches to dynamical down-

scaling: GCM time-slice or variable resolution experiments

and nested regional modelling.

3.1.2.1. Time Slice=Variable Resolution This approach

makes use of a high resolution GCM (>T100 or 1�0.5�

lat=lon) or a variable resolution GCM (one that has a

‘‘standard’’ resolution over most of globe, but fine resolution

over the region of interest) to provide high resolution output

at a future ‘‘time slice’’ [44–46]. These simulations are

typically forced with coarse resolution GCM SST and sea ice

fields, as well as GHG forcings.

Results to date are equivocal: patterns of regional changes

can be more dependent on the AGCM than the SST forcings

used. The approach does produce improvements in the large-

scale meteorology, but in some cases the biases in course

Table 2. Approaches to downscaling.

Approach Description Examples

SIMPLE Apply the GCM grid box change fields to the local climate time series [42, 62,

Easy to do for numerous models 63, 64, 65]

Provides first-order indications

Fails to capture local effects

Difficult to provide information on extremes

Statistical Relate large-scale predictors in GCM to parameters of interest in local [51, 61,

time series. 66, 67, 68]

Gives site-specific information

Non-trivial model development

Potential for multiple GCM downscaling

Requires accurate local data

Mismatches between current and future predictors

Circulation Indexing Reconstruct circulation indices (or weather types) and relate local [57, 69,

conditions to changes in frequency of indices 70, 71]

Has meteorological basis

Identification of indices can be difficult

Problems in areas where convection is prominent

Weather generator Force a numerical weather generator with changes derived from [60, 72,

GCMs 73, 74]

Weather generators are relatively common

Flexibility in constructing time series – can have multiple series.

Difficult to scale up to regional changes

Dynamical (regional model; Use a high resolution model with boundary conditions forced from [44, 45, 49,

high-resolution GCM) GCM 75, 76, 77,

Matches resolution of weather forecast models. 78, 79, 80]

Provides large range of weather parameters.

Preserves spatial covariance of weather.

Requires advanced computing.

Relatively few scenarios available.

Unable to provide site-specific data.
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resolution GCMs are overcorrected, producing biases of

opposite sign. This is because (in part at least) the model

physics and parameterisations are scale dependent (and

many course resolution GCMs are non-hydrostatic, so don’t

work as well at higher resolutions where topography

requires hydrostatic physics).

Reliance on single model is also potentially problematic

as results would then be highly model-dependent (as with

standard GCMs).

3.1.2.2. Regional Modelling In these approaches, a higher

resolution atmospheric climate model (RCM), usually with

scale-appropriate physics, is forced over a limited domain

(e.g., Europe [7, 47–49]) by the surface and lateral boundary

conditions derived from a GCM.

The choice of the regional domain is important. If the

domain size is too small ‘‘edge effects’’ from the adjacent

boundary conditions can affect the region of interest.

However, if too large a domain is used the regional climate

can become decoupled and produce meteorology that is

independent of the global forcings. Domain boundaries

should also be defined so that they do not coincide with

regions of steep or complex topography.

Recent developments include the coupling of RCMs to

other models of climate system components, most impor-

tantly land, biosphere and=or hydrology models, and also

multiple nesting (RCMs within RCMs).

There is good evidence that regional models provide

added value, particularly for precipitation, which remains a

key driver of many impact systems. Nonetheless, RCMs

remain reliant on good quality GCM forcing fields. To date

RCM experiments have been very goal-specific, and the

ideal of multiple RCMs forced by multiple GCMs

(ensembles) to obtain information about the spread of

predictions (uncertainty) has not yet been achieved.

Despite the improved spatial resolution of RCMs, they

still fail to deliver site-specific information. In such cases,

some form of additional downscaling is required. This can

be achieved by simple downscaling (described above), or

using statistical methods (see below). In both cases the

coarser scale information derived from a RCM is likely to be

superior to that derived from a GCM.

A key advantage of RCMs that their ability to simulate

multi-site (albeit on a model grid) climate where the spatial

covariance of the climate is preserved. This remains a

methodologically difficult task for the statistical methods

described below.

3.1.3. Statistical Downscaling

Statistical downscaling techniques aim to obtain ‘‘added

value’’ over and above the grid-scale surface climate

information provided by GCMs. The underlying rationale

is that although GCMs reproduce the larger-scale atmo-

spheric circulation reasonably well, grid point realisations of

surface climate are less well simulated, and are fundamen-

tally limited because of the resolution limitations of GCMs.

For example, GCMs are unable to resolve local topographic

controls on climate, small-scale land-sea interactions,

mesoscale landsurface forcings and convectional precipita-

tion processes. Three main types of statistical downscaling

are regression, weather typing and stochastic methods.

Although convenient, this tripartite division masks the fact

that many techniques are combinations of two or more of

these end members.

3.1.3.1. Regression and Weather Typing At the heart of

regression and weather typing techniques lies the belief that

local climate processes which are not resolved at the GCM

grid scale, are nonetheless dependent on larger scale

atmospheric and surface climate output from GCMs.

Regression methods make use of linear (e.g., multiple

regression) or non-linear (e.g., artificial neural networks)

statistical relationships between large-scale GCM variables

and=or derived fields and the local climate data – either

station data or high resolution gridded products [40, 41, 50–

56]. The models are usually trained=calibrated on GCM

model data, usually some combination of temperature, upper

and lower level pressure fields, wind and atmospheric

moisture content. They are then run in a similar manner to

RCMs, in that they are forced with GCM predictors for the

future and changes in the surface climate variables of interest

are determined.

Weather-typing (or analogue downscaling) relates parti-

cular modes of mesocscale (synoptic) weather features to the

observed surface climate. These modes can either be defined

empirically (e.g., Conway and Jones [57]) or statistically, for

example through principal component analysis [58]. The

defined weather types are then related to the observed

surface climate, usually through some linear or non-linear

regression process similar to those described above.

3.1.3.2. Weather Generators Weather generators (WGs) are

statistical models of observed sequences of weather

variables (see Wilks and Wilby [59] for a recent review).

Most of these simulate daily weather phenomena, usually

with ‘‘secondary’’ climate variables predicted as a function

of precipitation occurrence and amount. The weather

generator model is calibrated against observed station data,

either a single site or multiple sites. In the latter case, the

model must be extended to incorporate the spatial covar-

iance structure of precipitation [60]. Once the WG has been

conditioned, long runs of synthetic climate with the same

statistical structure to the observed climate can be generated.

To use in a ‘‘climate change’’ mode, the parameters of the

WG model must be perturbed in an appropriate manner, as

some function of the GCM output; these may be conditioned

on some large-scale atmospheric state, or on the grid point

output of the model (e.g., if GCM precipitation rainday

frequency changes, then alter the probability of rainday

occurrence in the WG proportionally). Clearly, the trick is to
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be able to perturb the WG parameters in a meaningful

manner.

Many WG models underestimate the variance of daily

weather variables, especially rainfall. This need to be

corrected for using, for example, inflation [56] or by adding

white noise, possibly conditioned on synoptic state.

3.1.3.3. Some Problems in Statistical Downscaling A rarely

addressed shortcoming of statistical downscaling is that the

downscaling model is calibrated and run in predictive mode

using different GCM output. Most approaches calibrate the

downscaling model against re-analysis data – this is

necessary to relate ‘‘observed’’ large scale parameters to

observed station data – but then use GCM to simulate

climate change. The GCM and re-analysis typically have

different resolutions and different climatologies (e.g., low

pressure zones occurring at different latitudes, or with

differing intensity). Thus the conditioned model may not

operate appropriately when forced with GCM data. A further

problem is that, in some instances, different variables

mean different things in different climate models: using

(nominally) the same predictor variables from reanalysis and

GCMs may not be strictly valid and may make the outcomes

unstable when used in predictive mode.

Choice of predictor variables is important. In the case of

rainfall, some measure of atmospheric humidity is critical

(Wilby, personal communication), but these are often not

very well simulated in re-analysis and very few evaluations

of this variable in GCMs have been undertaken.

Statistical downscaling will only be able to predict climate

change as a function of the GCM predictor variables. If other

processes lead to changes in local climate, then these changes

will not be reflected in the downscaled climate. For example,

Schubert [61] showed that changes in temperature extremes

over Australia were forced by radiative properties of the

atmosphere and not circulation changes, and could therefore

not be predicted by his statistical downscaling methodology.

3.1.3.4. Advantages Statistical methods remain the only

way to generate site-specific climate data, and in many

instances have been demonstrated to provide ‘‘added value’’

to simple downscaling. They are computationally cheap,

relative to dynamical methods, and are eminently suitable

for multiple simulations (using multiple integrations with the

same GCM, or multiple GCM runs, or both). Finally, they

are appropriate for a ‘‘bottom-up’’ approach to impact

assessment, where the local-scale climate variables impor-

tant for an impact study can be identified at the outset, and

included in the downscaling model.

4. ISSUES IN SCALING METHODS

Methodologies for up and down scaling vary considerably in

their requirements for data and technical expertise, potential

for validation, and their contribution to the quality of the

overall research effort. Issues of stakeholder participation in

(and representation in) integrated assessment are also relevant.

4.1. Input Data

A reduced-form modelling approach may not be appropriate

if a study requires very detailed information, which is only

provided by complex site-based models. In such cases, the

fundamental problem is how to relate the detailed model to

geographic regions.

4.2. Technical Expertise

Expertise already present at an institute will largely

determine the amount of time required to develop a

methodology. Using datasets from earlier projects or by

other accessible groups may reduce the financial and time

costs.

4.3. Validation

Models may be validated in many different ways, reflecting

the different scales involved in crop modelling. At the

process level model results may be compared with the results

from controlled experiments where only a few external

conditions have been manipulated, such as soil water content

[81]. Crop simulation models differ in their description of

physiological processes, but are in general able to describe

reasonably well the response of crop production (especially

yield) to changes in temperature and precipitation.

At the site level models may be compared with observed

yields, if the models include management data (e.g., Landau

et al. [82]).

Comparison of observed aggregated regional and national

yields with simulated yields, adds extra uncertainties to the

validation process. The scaling-up method may itself be a

source of error. This includes uncertainties in the model

inputs, both regarding soils and climate data, but also

regarding management data.

Often data on average or ‘‘normal’’ management have to

be used for simulating regional yields. Results of comparing

simulated county and national yields with observed ones

have shown that the model can explain 20 to 30% of the

interannual variability in observed yields in Denmark [12].

Similar results have been found for the application of the

Sirius model for the Brandenburg region in Germany

(Jamieson, personal communication, 1999) and for the

Canterbury region in New Zealand (Olesen, personal

communication, 1999). In contrast the crop models have

been shown to explain a much larger part of the variation in

yields in Finland [18].

These results suggest that at the margin of a crop’s

growing area (such as Finland and probably some Medi-

terranean countries for wheat) there will be a good
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correspondence between simulated and observed yields,

because it is the main climatic factors that constrains yields.

In the core of the wheat growing area in Europe, wheat yields

are generally not directly determined by climate, but by

management, some of which may also be climate related, but

not currently described in our models.

In the validation of scaling-up methodologies, it is

important to consider the variability of simulated and

measured yields in both time and space and the possible

interaction between time and space. There are a number of

options available to perform this validation.

4.4. Uncertainty and Risk

Given the large range of uncertainties in climate change [83–

88], what should have priority?
Up- and down-scaling introduce additional uncertainties

into climate change impact assessment, and integrated

assessment. Is the additional effort justified? Do the benefits

override the required effort and uncertainty? There appears

to be little guidance for these strategic questions. In most

cases, the sophistication of multi-scale methodologies is

driven by disciplinary research teams rather than a priori

consideration of what users need.

Handling extremes and extreme events is perhaps the

most difficult, and yet most important, issue. How can useful

information, especially on changes in joint probabilities of

phenomenon – e.g., dry spells, consecutive hot summers, dry

spells and increased wind – be extracted from global climate

models? The recent ECLAT workshop [89], concluded that

downscaling of extremes had not been addressed to any great

extent, but probably represented an order of magnitude

increase in methodological difficulty, most especially

because the large scale forcing is less well resolved at the

GCM scale.

From a ‘bottom up’ perspective, sensitivity to extreme

events is often poorly captured in impact models. In such

cases, one might wish to map ‘impacts scenarios’ before

investing scarce resources in defining extreme event

scenarios that are not likely to be robust.

4.5. Stakeholder Participation

Really useful modelling requires stakeholder participation.

Given the common constraints of time, how can stakeholders

understand the complex issues of scale?
Some will be overly convinced that high resolution maps

equate with robust predictions. Others will look at the list of

caveats and conclude that the uncertainties overwhelm the

insight. Modellers themselves tend to anchor their expertise

on their own models – but have difficulty in translating their

insight for new users.

We suggest that an agent-based approach may provide

stakeholders with easier access to model participation and

interpretation.

4.6. Scaling Agents

The translation of climate change research from impacts (‘‘if

climate change, what are the impacts’’) to adaptation (‘‘how

can we cope with climate change?’’) requires novel methodo-

logies and techniques (see Downing et al. [4]).

One promising approach is the use of software agents to

represent decision makers (variously called actors or

stakeholders). The idea is to capture the cognitive processes,

decision algorithms and layers to decision making in

software agents. The paradigm has its roots in computer

science, where software robots search the web looking for

particular kinds of information for example. A community of

decision theorists, sociologists and psychologists has

extended the approach, in what may be termed agent-based

social simulation (see AgentLink as an example of efforts

underway: www.AgentLink.org).

An important feature of such models is that they capture

representations of changing social relations. These relations

encompass the social embedding of an individual and the

complexity of an individual’s exchange with the environ-

ment. Such changing relations include institutional changes

in exchange, changing organisational structures, the devel-

opment of new mental models by agents and how these

affect policy assessments.

A key issue is the scale of the agents. Are they

individuals? Aggregations of individuals? Communities,

for example, defined by geography or class? Corporate

actors with recognised structures? Or do we need models

of agent cognition – the psychology of decision making

(in which the agents might be the ego and id, as one

example)?

5. CONCLUSIONS

No easy conclusions can be drawn from this comparison of

up and down scaling methodologies. Data, expertise, time

and financial resources are limited, and may drive the choice

of method more strongly than the technical merits of

different schemes.

Based on the model testing in the CLIVARA project,

however, it is possible to make some general statements. The

simplest, site-driven approach may be justified in some

homogeneous environments (Denmark) for some parameters

(mean and variability of yield). For spatial grids a subset of

the complete grid is adequate for many purposes. A baseline

can be estimated on the whole grid and a series of sensitivity

tests run on a stratified sample.

Conversely, in complex terrain, a regional approach can

expose key non-linearities that may not be apparent from

site-based analyses. Including remote sensing techniques in

impact studies allows full representation of landscape

dynamics while not necessarily making the analysis overly

complex.
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Similarly, sophisticated methods of downscaling climate

change scenarios may be warranted where local variability

in the terrain or in impacts are of great concern. However,

where the coarse grain scenario varies significantly (e.g.,

different GCMs report significant increases or decreases in

precipitation), simple downscaling methods may be suffi-

cient to capture a sense of the risks.
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