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Abstract

Technological change has been used both in favor of, and against de-
laying the onset of greenhouse gas abatement. In this paper we develop
a theoretical model using stochastic dynamic programming to show that
the uncertainties in technological change and economic growth have a di-
rect impact on the design of cost-effective policies and their effect is to
unambiguously dilute arguments in favor of delaying mitigation. Optimal
strategies that that meet emission reduction targets in the presence of
these uncertainties require earlier and greater abatement of carbon emis-
sions. Policies aimed at meeting GHG reduction targets should recognize
the benefits of early abatement.

Keywords: Timing of Mitigation; Climate Change; Technological Change;
Economic Uncertainty

1 Introduction

During the Kyoto period (2005–2012) nations have taken very different ap-
proaches to mitigation of Greenhouse Gases (GHGs). The US has avoided
taking any steps at the national level to reduce GHGs and chosen to focus in-
stead on developing new technologies for abatement in the future; EU member
states have taken a more proactive approach to GHG mitigation and some have
made progress towards meeting their Kyoto targets. Others such as Canada
have made feeble attempts to reduce carbon emissions, implicitly choosing to
delay the onset of mitigation. As nations look to the Post-Kyoto period starting
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2012, questions of delaying or accelerating emissions reductions will once again
come to the fore in international discussions.

An issue that has been the center of a long debate, and is also the subject
of this work, relates to the timing of mitigation decisions (Grubb et al., 1995).
Scholars have argued that early abatement is required in order to encourage the
development of energy efficient technologies (Goulder & Schneider, 1997); to
militate against the effects of inertia in energy systems (Azar & Dowlatabadi,
1999); to counter the tendency of political systems to procrastinate (Kelbekken
& RIve, 2007). Others have argued that a delay would reduce costs: through
exogenous technological change and returns to investments in R&D; by taking
advantage of capital turnover; and through discounting and positive marginal
productivity of capital (Wigley et al., 1996; Manne & Richels, 1999; Morgenstern
et al., 1999).

More recently, scholars have also debated the timing of carbon reductions
vis-à-vis avoidance of the impacts of climate change. Azar & Dowlatabadi (1999)
makes the obvious point that questions of timing merely depend upon the CO2

concentration target chosen; a delay would have a lower impact on our ability
to meet high target (e.g. 650 ppmv by 2100) than a low one (450 ppmv by
2100). O’Neill & Oppenheimer (2002) argue that CO2 concentrations above 450
ppmv constitute “dangerous” climate change and make the case that a delay in
mitigation beyond 2010 would make it impossible to meet a 450 ppmv target.
Yohe et al. (2004) show that modest emissions reductions in the near-term serve
as a hedge against high values of climate sensitivity and that uncertainty “is
reason for acting in the near term”.

While considerations of climate outcomes such as global temperature are im-
portant in setting global emissions reductions goals (Hasselmann et al., 2003),
Kyoto-style targets and timetables continue to be the preferred approach among
policymakers1. This paper focuses on the timing of emissions within the con-
text of emissions reduction targets relative to a current emissions baseline. An
important issue that has received less attention in the timing debate is the role
of uncertainties in technological change and future economic growth. These un-
certainties can arise for a number of different reasons including ups and downs
in economic growth, fluctuations in energy prices and prices of commodities,
and uncertainties in the fraction of energy supply that will be met by differ-
ent fuel types. Since assumptions about technological change and economic
growth are central to future emissions and abatement scenarios, it is likely that
uncertainties in these quantities could impact the magnitude and timing of emis-
sions reductions. Specifically, the question is whether taking account of these
uncertainties provides additional reasons to accelerate emissions reduction, or
whether this would suggest delaying reductions? In this paper we show that
these unambiguously dilute arguments that favor delaying mitigation. In other
words, the key result of this paper is that meeting emission reduction targets
in the presence of these uncertainties results in optimal strategies that require

1Witness the recent legislation on climate change in California which defines targets of
1990 levels in 2020, and 80% below 1990 levels in 2050; or British Columbia legislation which
sets a target of 20% below 1990 levels in 2020.
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earlier and greater abatement.

2 Model Framework

We use a dynamic programming framework. Since much of the discussion of
mitigation is centered on strategies that minimize the mitigation cost, dynamic
programming is a useful way to characterize the problem. The problem is to
find a mitigation path to the target emission EGHG(T ), which minimizes the
total discounted cost:

(1) TC(T ) =
∫ T

0

Cost(t)eρtdt

GHG emissions are a byproduct of economic activity and directly propor-
tional to the total economic output Q(t). σtis the “decarbonization” function
or the carbon intensity, i.e., the ratio of carbon emissions to the total economic
output. This implies that the emissions (at time t), in the absence of abatement
policies, is given by E0(t) = σ(t)Q(t).

The abatement level is given by: λ(t) = 1 − Eλ(t)
E0(t)

, where Eλ(t) is GHG
emission level in the presence of abatement policies, λ(t) appears in the relation
between and the total economic output Q(t):

(2) Eλ(t) =
(
1− λ(t)

)
σ(t)Q(t)

Technological change is conceptually divided into two categories—exogenous
and endogenous. Exogenous technical change causes changes to the emissions to
GDP ratio in the absence of abatement policies, and σ(t) is independent of λ(t).
Endogenous technological change results from abatement policies; here σ(t) is
a function of λ(t). Endogenous technological change is a strong argument in
favor of engaging in early mitigation (Goulder & Schneider, 1997; Grubler et
al., 1999). Since, as we show in this paper, the inclusion of uncertainties in
economic and (exogenous) technological change is consistent with this finding,
we limit our analysis to exogenous technical change. Further, the influence of
uncertainties in economic growth alone on timing of abatement provides a ra-
tionale for this analysis independent of the relationship between σ(t) and λ(t).
Ignoring endogenous technical change greatly simplifies the mathematics, and
does not weaken our conclusions on the role of technical and economic uncer-
tainty in meeting targets. We will return to the issue of endogenous technical
change in the final section of this paper.

The approach assumes that mitigation policy is a dynamic process. The
goal of mitigation is to ensure that the mitigated emission level Eλ(t) stays
on the optimal trajectory, such that the emissions at a future time T meet a
predetermined target EGHG(T ) while minimizing the cost given in Equation 1.
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To achieve this goal, the changes in GHG emission ∆Eλ are computed in reaction
to the changes ∆E0 in the value of σ(t)Q(t), the base emissions.

In this formulation, dynamic constraint of the problem is given by:

(3) Ėλ =
(
1− µ(t)

)
σ(t)Q(t)

[
σ̇(t)
σ(t)

+
Q̇(t)
Q(t)

]

The control variable, µ(t), is given by:

(4) µ(t) = 1− Ėλ

Ė0

The relation between the “dynamical abatement level” µ(t) and the abate-
ment level λ(t) is found by differentiating Equation 1 with respect to time:

(5) µ(t) = λ(t) +
λ̇(t)

1
σ(t)Q(t) ·

δσ(t)Q(t)
δt

= λ(t) +
λ̇(t)[

σ̇(t)
σ(t) + Q̇(t)

Q(t)

]
Whereas the abatement level is constrained to satisfy 0 ≤ λ(t) ≤ 1 (Equa-

tion 2), the control variable µ(t), can become larger than one. If µ(t) > 1, it
follows that, Ėλ(t) < 0. To maintain the GHG emission stationary requires
µ(t) = 1. Further, at the onset of mitigation, λ(0) = 0 for all the mitigation
effort, and therefore the mitigation cost is in the rate of implementation λ̇(t).

Without loss of generality for our conclusions, we can assume that σ(t) and
economic output Q(t) on the average follow a simple exponential evolution, i.e.
σ(t) ≈ σ0e

δσt and Q(t) ≈ Q0e
δQt, so that σ̇i(t)

σi(t)
= δσ (δσ < 0) and Q̇(t)

Q(t) = δQ.
This is the expression for σ(t) and Q(h) that we will use in the case of perfect
foresight, i.e., when technological and economic uncertainties are not present.

2.1 Incorporating the uncertainties

Uncertainties in the “decarbonization” function and economic output imply that
σ(t) and Q(T ) can be treated as stochastic variables. The simple exponential
form for their evolution is replaced by a set of stochastic differential equations
(Dixit & Pindyck, 1993):

(6) dσ(t) = δσσ · dt + ησ(σ) · dzσ

(7) dQ(t) = δQQ · dt + ηQ(Q) · dzQ

dzσi and dzQ are infinitesimal stochastic variables such that: 〈dzQ〉 = 〈dzσ〉 =
0 and 〈dz2

Q〉 = 〈dz2
σ〉 = dt, where 〈x〉 represents the expected value of x. Fur-

thermore, we assume that they are uncorrelated, i.e: 〈dzQ ·dzσ〉 = 0Ȧt the zero-
stochasticity limit, (i.e. when the infinitesimal variances ησ(σ) and ηQ(Q) → 0),
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the solutions to Equation 6 and Equation 7 are the simple exponentials σ(t) ≈
σ0e

δσt and Q(t) ≈ Q0e
δQt.

Here we employ the common assumption that the infinitesimal variances
ησ(σ) and ηQ(Q) take the form ησ(σ) = ησ · σ. This is equivalent to assuming
that the stochasticity generates fluctuations proportional to the value of the
variables, and that Q(t) and σ(t) are lognormally distributed random variables.

When Q(t) and σ(t) follow stochastic evolution given by Equation 6 and
Equation 7, the dynamical constraint equation (Equation 4) becomes stochastic
as well:

(8)
dE(t) = ξ · dt + ησ

E · dzσ + ηQ
E · dzQ

with ξ =
(
1− µ(t)

)
σ(t)Q(t)

[
δσ + δQ

]
In summary the dynamic programming problem is to minimize Equation 1,

subject to the dynamical constraints of Equation 3 (non-stochastic), or Equa-
tion 8 (stochastic) and with a condition on the expected final value of emissions
given by 〈E(T )〉 = EGHG(T ).

3 Effect of stochasticity on meeting the target
values

Before we proceed to solve the formulation described in Section 2, it is instructive
to look the impact of stochasticity on the final “target” values for the emissions
abatement level at time T . When σ(t) and Q(t) are stochastic, neither σ(t)
nor Q(t) can be precisely known. In this section we estimate the consequence
for the target abatement levels without stochasticity, λ(T ) = 1− EGHG(T )

σ(T )Q(T ) , and

with λst(T ) = 1−
〈

EGHG(T )
σ(T )Q(T )

〉
.

Using Ito’s lemma (Dixit & Pindyck, 1993) and Equation 8, one can write
the stochastic differential equation for σ(T )Q(N).

(9) d
[
σ(t)Q(t)

]
= σ(t)Q(t)

([
δσ + δQ

]
dt + ησdzσ + ηQ · dzQ

)
Rewriting Equation 9 by substituting x = ln(σQ) gives:

(10) dx =
[
δσ + δQ

]
dt + ησ · dzσ + ηQ · dzQ

This corresponds to the equation for Brownian motion with respect of the
variable x, where σ(T )Q(T ) is lognormally distributed with a time dependent
variance. The distribution of values of σ(T )Q(T ) is given by φ(σQ, T ;σ0Q0)
which is the solution to the Kolmogorov equation (Dixit & Pindyck, 1993):

(11)
δφ(x, t)

δt
=

1
2

(
η2

σ + η2
Q

)δ2
[
φ(x, t)

]
δx2

−
(
δσ + δQ

)δ
[
φ(x, t)

]
δx
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The solution is (Karlin & Taylor, 1981):

(12) φ(σQ, T ;σ0Q0) =
1√

πT
(
η2

σ + η2
Q

) · e
[
−

log

(
σQ

/
σ0Q0e

[δσ+δQ]T

)2(
η2

σ+η2
Q

)
T

]

Equation 12 implies that

(13) λst(T ) =
〈
λ(T )

〉
= 1− EGHG(T )

σ0Q0e[δσ+δQ]T
= λ(T )

The message of Equation 13 is that the addition of the stochastic effects does
not affect the target abatement level λ(T ), although it introduces an uncertainty
in its value. λ(T ) is lognormally distributed with a variance equal to T

(
η2

σ+η2
Q

)
.

The expected final value of emissions is given by:

(14)
〈
E(T )

〉
= EGHG(T )

In other words, the target value can be met only in an expected sense and
never exactly. Further, the variance of the emissions at the target increases with
the time horizon T , and the level of stochasticity

(
η2

σ + η2
Q

)
.

4 The Cost Function

A key ingredient of this normative framework is the cost function, whose struc-
ture determines the form of the solution. While the estimates of mitigation
cost vary a lot, a number of these estimates can be expressed in the following
functional forms (Nordhaus, 1994)

(15) Cost(λ) = aλν a > 1

The mitigation cost for carbon is a monotonic function of abatement and grows
faster than linearly in the abatement level. This form of the cost function is
consistent with reviews of top-down mitigation costs (Jaccard & Montgomery,
1996; Reilly et al., 2003) and the different values for the exponent are provided
in Figure 1.

There has been a long debate between “top-down” and “bottom-up” camps
on the cost of GHG mitigation. The top-down paradigm assumes that economies
use the optimal mix of energy supply options given currently available technol-
ogy. In the bottom up approach, the costs of carbon mitigation are calculated
by replacing the current mix of technologies with more efficient technologies
that are currently available or reasonably foreseen. In bottom-up approaches
the energy savings from the use of efficient technologies result in abatement that
has lower costs. The cost function Cost(λ) = aλν with a and ν both greater
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Figure 1: Mitigation cost (in percentage of GNP) as a function of mitigation level
(in % of global carbon emissions) from the literature. Reproduced from Jaccard
& Montgomery (1996). The cost function of each group can be approximated
by the expression: Cost(λ) = aλν , but with different values for the parameters.
Estimated values for exponent ν were estimated using a simple regression on
the log of the cost model. Estimated values were 1.35(MRG), 1.223(JW), 2.027
(BG), 2.8 (OMG), 2.046 (Goulder).
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than 1 better fits the “top-down” philosophy. The condition ν < 1 offers some
flexibility for incorporating “bottom up” arguments where-by costs of mitiga-
tion can be lowered by fast uptake of energy efficient technologies. In this work,
however, we use ν > 1, which is a more generally accepted assumption (see
Figure 1). Some of the arguments in this paper would be reversed if we assume
that ν < 1.

We assume that the cost function is of a similar form but is a function of
variable µ(t), i.e. we choose as cost function:

(16) Cost(µ) = aµν

This second expression (Equation 16) involves both the level of abatement
λ(t), and rate of implementation λ̇(t) (Equation 5). This cost function Cost(µ) =
aµν allows us to incorporate an element akin to capital cost inertia in the for-
mulation (Ha-Duong et al., 1997).

5 The Optimal Solution with Perfect Foresight

We first solve the problem defined by Equation 1 and Equation 2, with the cost
function given by Equation 16, using dynamic programming. The objective
function is:

(17) I(t, T, λ) =
∫ T

t

Πddt =
∫ T

t

e−ρtCost(λ)dt

The Bellman equation (Merton, 1964) for this problem is:

(18) 0 = min
{µ(t)}

{
Πd(µ, t) +

δIt

δt
+ ξ

δIt

δEµ

}
where ξ is given by Equation 8. The minimum occurs when the derivative of
Equation 18 with respect to µ(t) vanishes. This implies that on the optimal
path:

(19)
1

σ(t)Q(t)
[
δσ + δQ

] · δΠd(µ, t)
δµ

=
δI − t

δE

In order to transform Equation 18 into an equation for the optimal mitiga-
tion path, we derive the Bellman equation (Equation 17) with respect to the
dynamical variable E to get:

(20)
1
dt

〈
d

[
δIt

δE

]〉
= 0
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Comparing Equation 20 and Equation 19, optimal path is given by:

(21)
d

dt

[
1

σ(t)Q(t)
·
δ
[
e−ρtCost(µ)

]
δµ

]
= 0

the functions Cost(µ) = aµν , σ(t) = σ0e
δσt and Q(t) = Q0e

δQt and Equa-
tion 21 together imply that the optimal path for the control variable is the
exponential form:

(22) µ(t) = µ(0)e
(δσ+δQ+ρ)

(ν−1) ·t

In order to determine µ(T ) and µ(0) one needs to know the optimal emission
profile Eλ(t) and the optimal mitigation profile λ(t). They can be obtained
by integrating Equation 4 and Equation 5, respectively. We assume that the
abatement level at time t = 0 is zero, i.e., λ(0) = 0. Then, the optimal emission
profile is given by the expression:

(23)

Eλ(t) =

e[δσ+δQ]tEλ(0) ·

{
ρ +

(
ν − (ν − 1)µ(0)e

{
(δσ+δQ+ρ)

(ν−1)

}
t
)
·
(

δσ + δQ

)}
{

ρ +
(
ν − (ν − 1)µ(0)

)
·
(
δσ + δQ

)}
And the equation of the optimal mitigation path is:

(24)

λ(t) =

{µ(0)
[
e

{
(δσ+δQ+ρ)

(ν−1)

}
t
− e−

[
δσ+δQ

]
t

]
[

(δσ+δQ+ρ)
(ν−1) +

[
δσ + δQ

]] +
(
−1+[δσ+δQ]

)
·

(
1− e−[δσ+δQ]·t

)
[
δσ + δQ

] }

The shape of the curves corresponding to Equation 23 and Equation 24 is
shown in Figure 2.

From Equation 23 and Equation 24, and assuming T is large, we can derive
an approximation for the initial value of the dynamical abatement µ(0):

(25) µ(0) ≈ λ(T )
(

Λ0

(δσ + δQ)
+ 1

)
· e−Λ0T

where Λ0 = (δσ+δQ+ρ)
(ν−1)

Equation 22, Equation 24, and Equation 25 show that optimal abatement
follows an exponential path whose rate depends on the value of rates for eco-
nomic growth, decarbonization and discounting.
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Figure 2: Typical form of an optimal emission profile Eλ(T ) for the non-stochastic
assuming that after 30 years the emissions are stabilized to 40% below the value
at t = 0. The unit of emission normalized to 1 at t = 0.

6 The Optimal Solution With Stochasticity

A key advantage of using dynamic programming is that it extends to the stochas-
tic (Merton, 1971; Pindyck, 1980) case, i.e., where the dynamical constraint is
given by Equation 8 instead of Equation 3. The expression to minimize is the
expected total discounted cost I(0, T, λ), where:

(26) I(t, T, λ) =
〈 ∫ T

t

Πddt
〉

=
〈 ∫ T

t

e−ρtCost(λ)dt
〉

From Ito’s Lemma, the Bellman equation becomes (Merton, 1971)

(27) 0 = min
{µ(t)}

{
Πd(µ, t) +

δIt

δt
+ ξ

δIt

δEµ
+

1
2

{[
(ησ

E)2 + (ηQ
E )2

]δ2It

δE2

}}
Following the same steps that lead to Equation 21, we get a stochastic gen-

eralization for the equation for the optimal trajectory:

(28)
1
dt

〈
d
[ 1
σ(t)Q(t)

· δΠd(µ, t)
δµ

]〉
=

1
dt

〈
d
[δIt

δE

]〉
= 0

Equation 28 is a bit more complicated to solve than Equation 21. We define:
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(29) Ψ(σ,Q, µ, t) =
νe−ρtaµν−1

σ(t)Q(t)

Equation 28 reduces to 0 − 1
dt 〈d[Ψ]〉. Applying Ito’s lemma yields the fol-

lowing equation for the optimal path of the control variable with stochasticity:

(30)

0 =
1
dt
〈d[Ψ]〉 =

{
− ρΨ + αµ

(ν − 1)
µ

Ψ−
[
δσ + δQ

]
Ψ +

[ησ(σ)2

σ2
+

ηQ(Q)2

Q2

]
Ψ

}
From Equation 30, (using αµ = µ̇), the equation for the optimal path for

the control variable µ(t) is :

(31)
dµ

dt
=

µ

(ν − 1)

{
ρ + δQ + δσ −

ησ(σ)2

σ2
− ησ(σ)2

Q2

}
From Equation 31, the equation for the optimal path for the control variable

µ(t) is:

(32)
dµ

dt
=

µ

(ν − 1)

{
ρ + δQ + δσ − η2

σ − η2
Q

}
Thus the stochastic version of the control variable is:

(33) µst(t) = µ(0)e

(
δσ+δQ+ρ−(η2

σ+η2
Q)

)
(ν−1) t

At the zero stochasticity limit (ησ → 0 and ηQ → 0), Equation 33 gives the
same path for µ(t) as in Equation 22. Equation 32 implies that the effect of
stochasticity is to reduce the average rate of change of µ(t), thus requiring a
higher initial rate of abatement for meeting a given emission target EGHG(T ).

Substituting µst(t) in Equation 5 and proceeding as in Equation 23 and
Equation 24, the stochastic generalization of Equation 25 is obtained:

(34) µst(0) ≈ λst(T ) ·
(

Λη

(δσ + δQ)
+ 1

)
e−ΛηT

The impact on the onset of mitigation can be elicited from Equation 3 as:

(35) λ̇st(0) =
(
δσ + δQ

)
µst(0) ≈ λst(T )

(
Λη + (δσ + δQ)

)
e−ΛηT

(36) with: Λη = Λ0 −
(η2

σ + η2
Q)

(ν − 1)
=

(
δσ + δQ + ρ− (η2

σ + η2
Q)

)
(η − 1)
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Inspection of Equation 35 shows that λ̇st(0) > λ̇(0) when ν > 1. This implies
that the inclusion of stochasticity requires a faster initial rate of abatement in
order to meet a given target. The size of the effect depends on the value of the
target time T and of the rates of technological change and economic growth.

7 Quantitative Analysis of Results

In this section, we do a quantitative analysis of the influence of stochasticity
on various aspects of the emissions abatement—total emissions reduction re-
quired to meet an emissions target, the cost of abatement, the time horizon of
abatement policies, and questions related to delaying or accelerating mitigation.

The variables ησ and ηQ control the uncertainty on the rate of change of the
decarbonization function and on the growth rate of the economy. The assump-
tion that ησ(σ) = ηQ · σ and ηQ(Q) = ηQ ·Q, together with Equation 8, imply
that σ(t) and Q(t) are lognormally distributed. If φ(σ, T ;σ0) and φ(Q,T ;Q0)
denote the distributions of σ and Q, with σ0 = σ(t = 0) and Q0 = Q(t = 0)
then:

(37) φ(σ, T ;σ0) =
1√

2πtη2
σ

e

[
−

log

(
σ

σ0eδσt

)2

2η2
σt

]

(38) φ(Q,T ;Q0) =
1√

2πtη2
Q

e

[
−

log

(
Q

Q0e
δQt

)2

2η2
Q

t

]

Taking t = 1, in Equation 37 and Equation 38 yields a normal distribution
for the annual rate of change δσ of δ(t) (there is a similar distribution for δQ):

(39) φ(δσ, 1) =
1√
2πη2

σ

e

[
−

(
δσ−δmean

σ

)2

2η2
σ

]

(40) φ(δQ, 1) =
1√

2πη2
Q

e

[
−

(
δQ−δmean

Q

)2

2η2
Q

]

In numerical illustrations below we assume that the parameters take on the
following values: the discount rate is ρ = 5%/yr ; the abatement cost exponent
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Figure 3: Optimal path for the control variable µ(t) and abatement λ(t) for scenario
in Figure 2. µ(t) can be larger than 1, whereas the abatement level λ(t) is

always less than 1. λ(0) = 0 and µ(0) = λ̇(0)
[δσ+δQ]

is ν = 2; the declining carbon intensity of the economy is δσ = −1%/yr ; and the
long-term growth rate is δQ = 3%/yr . These values are to be seen as represen-
tative values rather as specific forecasts. We also vary the sum of uncertainties
in technological change and economic growth, η2

σ + η2
Q, from 0.5% to 1% and

2% per year to examine the impact of a range of values 2.
Figure 2 and Figure 3 show the emissions and abatement profiles for the

reference non-stochastic case. Figure 4 and Figure 5 illustrates that for the
stochastic case, the emissions paths are always lower, and the level of emissions
reductions needed to meet a given target increase monotonically with increasing
uncertainty the value of η2

σ + η2
Q. Additionally the effect of the uncertainty in

this value increases with a longe time horizon. This leads to the conclusion that
the effect of stochasticity on optimal abatement strategies is to require a more
aggressive approach to meet a given target.

The effect of stochasticity on total amount of mitigation required to meet
the target is also is also strongly influenced by the time horizon for mitigation.
Figure 6 shows that the amount of extra mitigation needed due to stochasticity

2Long term economic growth in much of the industrialized world has ranged close to 2%
over the past 200 years, with a slightly faster average in the post World War II era of 2.4%.
The coefficient of variation in growth over the post World War II period has been between
0.3 and 0.5 implying an inter-annual standard deviation of 0.7% to 1.2% (Dowrick & Nguyen,
1989). Since the 1950s decarbonization of the economy has proceeded in the US at an average
rate of 1.6% per year, and an inter-annual variation that we calculated to be 0.5% (EIA,
2007). For further discussion of historical rates of decarbonization see Nakicenovic (1996).
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Figure 4a: Optimal expected GHG emission profiles for stabilizing emissions after 30 

years to 60% of those at t=0. Values for stochasticity ( )22

Q!!" +  set at 2%, 1.5%, 1% 

and 0.5%.   

Figure 4: Optimal expected GHG emission profiles for stabilizing emissions after 30
years to 60% of those at t = 0. Values for stochasticity (η2

σ + η2
Q) set at 2%,

1.5%, 1% and 0.5%.
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Figure 4b: Optimal expected GHG emission profiles for stabilizing emissions after 60 

years to 60% of those at t=0. Values for stochasticity ( )22

Q!!" +  set at 2%, 1.5%, 1% 

and 0.5%.   

Figure 5: Optimal expected GHG emission profiles for stabilizing emissions after 60
years to 60% of those at t = 0. Values for stochasticity (η2

σ + η2
Q) set at 2%,

1.5%, 1% and 0.5%.
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Figure 5: The influence of time horizon on the effect of stochasticity. This figure shows 
the total excess reductions in emissions (Integrated from t=0 to t=T) required to meet a 
40% reduction target as a function of time plotted for different values of stochasticity 
(0.5%, 1%, 2%). All other parameters fixed to those in figure 4a.  

Figure 6: The influence of time horizon on the effect of stochasticity. This figure
shows the total excess reductions in emissions (Integrated from t = 0 to t = T )
required to meet a 40% reduction target as a function of time plotted for different
values of stochasticity (0.5%, 1%, 2%). All other parameters fixed to those in
Figure 4.

is greater as the time horizon, T , increases. In Figure 6 the total amount of
excess reductions required to meet a 40% reduction target as a function of T
relative to the case with perfect foresight are shown for values of stochasticity
(η2

σ + η2
Q) equal 0.5%, 1% and 2% respectively. This translates to between 2–10

% of total emissions for the entire time period depending on the length of the
time horizon.

The initial rate of abatement (at t = 0) λ̇(0) is quite sensitive to economic
and technological uncertainties. The effect is difficult to elicit analytically but
is illustrated numerically in Figure 7. From Figure 7, we see that the impact
of stochasticity on the initial rate of abatement is strongest for high values of
economic growth rates and low rates of exogenous decarbonization. For observed
historical rates (cf. footnote 2), the initial level of abatement is between 30 to
70% higher.

In Figure 8 we show the influence of stochasticity on the cost of mitigation.
The curve in the figure show the ratio of the expected mitigation cost given
by

〈
Cost [µ]

〉
= a

∫ T

0

∫
µ(t)νφ

(
σ(t)Q(t)

)
· d

(
σ(t)Q(t)

)
e−ρt · dt for two different

scenarios with T = 30 years. The scenarios whose ratio is shown Figure 9
are: (1) the optimal scenario that includes stochasticity; (2) a scenario where a
“sub-optimal” path and stochastic effects were ignored when in fact they were
present, i.e., this trajectory would be optimal in absence of stochasticity. In
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Figure 6: Effect of stochasticity on the relative value of the rate of abatement 
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different values + Q = 0%, 1%, 2%, 3% respectively, assuming 40% reduction in T = 
30 years. All other parameters fixed to those in figure 4a. 

Figure 7: Effect of stochasticity on the relative value of the rate of abatament λ̇st (0)

λ̇(0)

for different values equationunclear = 0%, 1%, 2% and 3% respectively, as-
suming 40% reduction in T = 30 years. All other parameters fixed to those in
Figure 4

other words, the figure shows the price of ignoring stochasticity.
The message of Figure 8 is that the total mitigation cost increases if one

ignores the uncertainties, and that these increases can range between 10–20%.
As seen in Figure 9, the optimal path that incorporates stochasticity starts with
higher levels of initial abatement i.e., the cost is initially higher. The sub-optimal
path starts lower but eventually crosses over in order to meet the emissions
target. The increase of cost towards the latter half of the period is such that
the overall cost is higher. The zero-stochasticity sub-optimal path also implies
that there is no adjustment around the optimal path to stochastic variations
in economic and technological changes. In reality, such degree of precision in
orchestrating emissions reductions is unlikely to be achieved. Figure 10 shows
the probability density function for the ratio of the costs of the two paths. The
optimal path that incorporates stochasticity is less expensive 70% of the time.
This leaves only a 30% chance that the perfect foresight assumption will result
in lowered costs.

8 Conclusions

We demonstrate in this paper is that it is possible to mathematically estimate
the combined effect of the uncertainties in technological change and economic
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Figure 7. The effect of stochasticity on relative abatement costs. The dependent variable 
is the expected ratio of the cost of an “optimal” emissions path that ignores stochasticity 
versus one that does not. The calculation assumes that emissions will be reduced to 60% 
initial emissions (T=0) at T = 30 years. All other parameters fixed to those given in figure 
4a.  

 

Figure 8: The effect of stochasticity on relative abatement costs. The dependent
variable is the expected ratio of the cost of an optimal emissions path that
ignores stochasticity versus one that does not. The calculation assumes that
emissions will be reduced to 60% initial emissions (T = 0) at T = 30 years. All
other parameters fixed to those given in Figure 4.
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Figure 8. Comparison of the optimal path that accounts for stochasticity and a "sub-
optimal" one that acts as though perfect foresight exists. All parameters fixed to those 
given in figure 4a.  

Figure 9: Comparison of the optimal path that accounts for stochasticity and a “sub-
optimal” one that acts as though perfect foresight exists. All parameters fixed
to those given in Figure 4
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Figure 9: The probability density function for the ratio of total costs of the optimal and 
sub-optimal (perfect foresight assumption) abatement path shown in figure 8. When the 
cost ratio is < 1, the optimal path is less expensive and vice-versa. The probability that 
the optimal path is less expensive than the sub-optimal path is the area to the left of cost-
ratio =1 and is equal to 0.7, i.e., the optimal path is less expensive 70% of the time.  

Figure 10: The probability density function for the ratio of total costs of the opti-
mal and sub-optimal (perfect foresight assumption) abatement path shown in
Figure 9. When the cost ratio is < 1, the optimal path is less expensive and
vice-versa. The probability that the optimal path is less expensive than the
sub-optimal path is the area to the left of cost-ratio =1 and is equal to 0.7,
i.e., the optimal path is less expensive 70% of the time.
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output on the optimal approach to greenhouse gas mitigation. The effect of
these uncertainties, which manifest themselves as stochastic changes in growth
rate and rates of decarbonization, is toward approaching mitigation more aggres-
sively. Assuming historical levels of growth rates and rates of decarbonization
(for a scenario requiring 40% reduction in 30 years) the uncertainty translates
in an expected sense into: higher initial rates of abatement (30–70%); higher
cumulative reductions (2–10%); lower costs of abatement (10–20%).

Why does the presence of uncertainties manifest itself in an optimal abate-
ment path that requires greater and earlier abatement? Consider two categories
of emissions paths. The first is a set of emissions paths (L), where the stochas-
ticity acts to produce total emissions lower than those from the non-stochastic
case. The second is the set of emissions paths (H), where the stochasticity acts
to produce emissions that are higher than those from the non-stochastic case.
The optimal abatement strategy has to be chosen such that on an average the
emissions target EGHG(T )is met at the least cost. For emissions paths, L, the
stochasticity acts to produce an optimal path that requires lower abatement
than the non-stochastic case, while for H, the opposite is true.

The cost function is a supra-linear function of the level of abatement (ν >
1), with higher levels of abatement resulting in more than proportional costs.
Emissions paths on H and those on L that have the same level of deviation
from the non-stochastic case have very different cost differentials relative to
the optimal expected path. As illustrated in Figure 10, there is an additional
penalty in having to make corrections in path H when emissions are greater
than those in the optimal abatement path. Thus, the presence of stochastic
fluctuations requires abatement earlier to reduce the chances of being on a path
in H. Earlier and more abatement serves as insurance to hedge against much
higher costs later.

What if one were to act as if the stochasticity does not exist, when in fact,
it does? When uncertainties are ignored, an optimal emissions path calls for
lower levels of mitigation to meet the same target (cf Equation 13). In such a
scenario, it becomes apparent at some point in time, that it is difficult to meet
a target at current mitigation levels. As a consequence rapid and large amounts
of abatement are now needed. The increase in abatement cost needed to meet a
target if the effect of stochastic fluctuations is disregarded (Figure 9) are sizable
and can grow rapidly with the size of the uncertainties.

Our model assumes that σ(t) is independent of λ(t). As a number of schol-
ars have pointed out pressure of mitigation is expected to generate endogenous
technological change, and σ(t) can drop in response to increasing λ(t) for a
diversity of reasons: through a broad but purposive portfolio of R&D invest-
ments (Grubb et al., 2002); through technological learning in niche markets and
subsequent diffusion to the rest of the economy (Grubler et al., 1999), aided by
the development of performance standards to limit consumer choice (Azar &
Dowlatabadi, 1999). Timing is critical to appropriate implementation of these
insights and there are several reasons why greater early mitigation efforts may
not lead to technical improvement. A stronger push for early mitigation might
result in over investment in and lock-in of existing technologies thus ‘crowding
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out’ the development of new and better options; rent seeking behavior (e.g.,
of the kind evidenced in the recent corn ethanol “frenzy” in the US (Klein &
LeRoy, 2007)) might lead to investment in mitigation actions that have neg-
ligible long-term impact on emissions. Clearly, there are many uncertainties
in the pathways through which mitigation influences endogenous technological
change. This analysis shows that outside the policy induced shifts in lock-in
and patterns of R&D, uncertainty clearly points to the benefits of early deep
mitigation. The relative magnitude of the policy induced technology effects vs.
the autonomous effects need to be resolved in order to arrive at a generalized
solution to this issue.
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